
GSTS 2018 Ansible Cookbook Lab Guide

Ansible Cookbook

F5 Networks, Inc.

2

Contents:

1 BIG-IP Basics (optional) 5
1.1 What is BIG-IP . 5
1.2 BIG-IP Basic Nomenclature . 5
1.3 F5 DevCentral BIG-IP Basics Articles . 5
1.4 Using F5 in Various Environments . 5
1.5 HA Proxy to BIG-IP Quick Start . 6
1.6 NGINX to BIG-IP Quick Start . 6

2 Getting Started 9
2.1 Lab Topology . 9

3 Class - Ansible Cookbook 11
3.1 Module – Installation and configuration of Ansible . 11
3.2 Module – Basic BIG-IP administration with Ansible . 21
3.3 Module – Slightly more advanced Ansible usage . 39
3.4 Module – Debugging Ansible problems . 59

3

4

1
BIG-IP Basics (optional)

Just in case you’re new to the F5 BIG-IP platform (or need a refresher) we’ve included some links and
videos below that will help get you started.

1.1 What is BIG-IP

Source: https://devcentral.f5.com/articles/lightboard-lessons-what-is-big-ip-26793

1.2 BIG-IP Basic Nomenclature

Source: https://devcentral.f5.com/articles/lightboard-lessons-big-ip-basic-nomenclature-26144

1.3 F5 DevCentral BIG-IP Basics Articles

BIG-IP Basics Articles: https://devcentral.f5.com/articles?tag=devcentral+basics

1.4 Using F5 in Various Environments

• Public Cloud:

– AWS/Azure/GCP/etc.: http://clouddocs.f5.com/cloud/public/v1/

• Private Cloud:

– OpenStack: http://clouddocs.f5.com/cloud/openstack/

– VMware: https://f5.com/solutions/technology-alliances/vmware

• Container Ecosystems:

– Cloud Foundry: http://clouddocs.f5.com/containers/latest/cloudfoundry/

– Kubernetes: http://clouddocs.f5.com/containers/latest/kubernetes

– Mesos Marathon: http://clouddocs.f5.com/containers/latest/marathon

5

https://devcentral.f5.com/articles?tag=devcentral+basics
http://clouddocs.f5.com/cloud/public/v1/
http://clouddocs.f5.com/cloud/openstack/
https://f5.com/solutions/technology-alliances/vmware
http://clouddocs.f5.com/containers/latest/cloudfoundry/
http://clouddocs.f5.com/containers/latest/kubernetes
http://clouddocs.f5.com/containers/latest/marathon

– RedHat OpenShift: http://clouddocs.f5.com/containers/latest/openshift/

1.5 HA Proxy to BIG-IP Quick Start

If you’re already familiar with HA Proxy, learning F5 BIG-IP is straightforward once you learn the associated
F5 terminology.

Here is a list of common HA Proxy configuration terminology and its F5 equivalent:

HA Proxy F5 BIG-IP
Frontend Virtual Server (VIP)
Backend Pool
Server Member
mode http HTTP Profile
default_backend Default pool
use_backend LTM policy
check port Health monitor

1.6 NGINX to BIG-IP Quick Start

If you are already familiar with NGINX, learning F5 BIG-IP will be straightforward once you learn the F5
terminology.

NGINX administrators usually use multiple files and leverage the include command in their config to break
down the config and make it easier to manage. F5 leverages Profiles which can be applied to a Virtual
Server.

NGINX uses in-band (passive) health monitors which can be enabled on F5 through the creation of an
inband monitor. BIG-IP also supports the use of active health monitors, which will poll the pool member
periodically. Both can be used together for better monitoring of your services.

F5 BIG-IP supports control-plane and data-plane programmability with:

• Node.js through the use of iRulesLX, iControlLX and iAppsLX

• TCL through the use of iRules and iApp Templates

A lot of the manual configuration and scripting steps that are required with NGINX are supported more easily
through various config parameters and profiles in BIG-IP. By leveraging the control-plane programmability
features this class covers you can achieve full automation of your services with the BIG-IP platform.

F5 BIG-IP is designed to be a full proxy by default. In most cases there is no need to tune TCP & HTTP
buffering like you would on NGINX (i.e. using proxy_buffering). This is because the default settings
have been optimized and can adapt to most situations.

Here is a list of common NGINX configuration terminology and its F5 equivalent:

6

http://clouddocs.f5.com/containers/latest/openshift/

NGINX F5 BIG-IP
listen Virtual Server Port (VIP)
upstream Pool
proxy_pass Default Pool
server Member
ssl_certificate SSL Profile Option
return LTM HTTP Policy Option
proxy_set_header X Forwarded For HTTP Profile Option Insert X-Forwarded-For
proxy_set_header LTM HTTP Policy Option
add_header LTM HTTP Policy Option
location & proxy_pass LTM HTTP Policy Option
Proxy Cache Web Acceleration Policy

7

8

2
Getting Started

Note: All work for this lab will be performed exclusively from the Ansible controller. No installation or
interaction with your local system is required.

2.1 Lab Topology

The following components have been included in your lab environment:

• 1 x F5 BIG-IP VE (v13.0)

• 1 x Linux Server (ubuntu 16.04 LTS)

• 1 x Linux Client (ubuntu 16.04 LTS)

• 1 x Ansible Controller (ubuntu 16.04 LTS)

2.1.1 Lab Components

The following table lists VLANS, IP Addresses and Credentials for all components:

Component VLAN/IP Address(es) Credentials
big-ip01

• Management: 10.1.1.4
• External: 10.1.10.10
• Internal: 10.1.20.10

admin/admin

client
• Management: 10.1.1.5
• External: 10.1.10.11

root/default

server
• Management: 10.1.1.6
• Internal: 10.1.20.11

root/default

controller
• Management: 10.1.1.7

root/default

9

2.1.2 Lab Environments

In order to complete this class you will need to utilize a specific Lab Environment. You can consume this
training in the following ways:

• Pre-built Environment using the F5 Unified Demo Framework (UDF)

– This environment is currently available for F5 employees only

Select the Environment from the list below to get started:

F5 Unified Demo Framework (UDF)

Note: This environment is currently available for F5 employees only

Determine how to start your deployment:

• Official Events (ISC, SSE Summits): Please follow the instructions given by your instructor to join
the UDF Course.

• Self-Paced/On Your Own: Login to UDF, Deploy the Ansible Cookbook Blueprint and Start it.

Connecting to the Environment

To connect to the lab environment we will use a Web Shell to connect to the Ansible Controller.

Connect using Web Shell

1. In the UDF navigate to your Deployments

2. Click the Details button for your Deployment

3. Click the Components tab

4. Find the Ansible Controller Component and click the the Access button. Then click the WEB
SHELL option. A new browser window/tab will be opened.

5. Ensure that the f5-gsts-labs-ansible-cookbook directory in your /root directory is up-to-date.

This can be done with the following command

cd /root/f5-gsts-labs-ansible-cookbook && git pull

6. Select how you would like to continue:

• Review: BIG-IP Basics (optional)

• Start: Module – Installation and configuration of Ansible

10

3
Class - Ansible Cookbook

This class covers the following topics:

• Installation and configuration of Ansible

• Basic BIG-IP administration with Ansible

• Slightly more advanced Ansible usage

• Debugging Ansible problems

These topics are arranged as a series of recipes, in much the same way as the O’Reilly Cookbook series.

Expected time to complete: 2 hours

3.1 Module – Installation and configuration of Ansible

The first step in using Ansible with an F5 product is to ensure that you have done the absolute minimum
required to make Ansible work.

The recipes in this chapter look at methods for installing and configuring Ansible. We cover things such as
installing the tool, establishing the correct directory layouts, and creating necessary files.

We will focus on using Ansible 2.5 for this class. This specific version of Ansible, at the time of this writing,
is not officially released. This will not be a problem for us, and will also serve to prepare you for what is
coming in the future.

3.1.1 Installing Ansible

Problem

You need to install Ansible in an existing Linux environment

Solution

Ansible is distributed in several ways. These include

• Via the system’s package manager

11

• Via the PyPI (pronounced “pie pee eye”) package repository

• Via source tarball

The only proper way to install Ansible is via PyPI using the pip command line tool.

pip install ansible

For the remainder of these labs we will be using the development copy of Ansible.

Since this is not yet available, we’ll install it directly from Github

$ pip install --upgrade git+https://github.com/ansible/ansible.git

This will include an updated set of modules that will be released in March.

Discussion

PyPI is considered the only correct way to install Ansible because it is the only method that the Ansible
developers themselves can control.

The packages that you find on Linux distributions such as Ubuntu, Fedora, or CentOS are maintained by
members of the Ansible community and not by Ansible itself.

Additionally, the packages that ship with your operating system are frequently out-of-date.

True, they may be current at the time of their release, but Ansible’s release cycle is quarterly, and therefore
they can become out of date quickly.

The pip method of installing is not constrained to the demands of the Linux maintainers; it exists outside
of their control. Therefore, it is the easiest way to get the most up-to-date software from Ansible.

One more concern with the Linux packages is that they typically place files in a location different from where
pip places them. This is totally expected, but it can have frustrating consequences should you choose to
switch to the pip version (for example, to upgrade to a more recent version).

The differences in file locations can conflict with each other and leave your Ansible installation a complete
mess. Best to just stick with pip.

3.1.2 Installing module dependencies

Problem

You need to install F5 Ansible module dependencies

Solution

Each module has different requirements. The F5 Ansible modules require the following PyPI packages

• f5-sdk

• bigsuds

• netaddr

• objectpath

• isoparser

• lxml

12

• deepdiff

These can be installed with the pip command

pip install f5-sdk bigsuds netaddr objectpath isoparser lxml deepdiff

Discussion

Unfortunately, there is no way to install all dependencies for all modules out of the box.

Instead, you must find the dependencies for the module you are interested in, and install them manually.
This can be done by either,

1. Using the ansible-doc command

2. By visiting the Ansible documentation page for the module.

Take bigip_selfip for example.

ansible-doc command

The ansible-doc command to view the requirements is,

ansible-doc bigip_selfip

The requirements are shown in the output of this command.

You may need to scroll to find this information.

13

Visiting documentation page

Alternatively you can visit the docs for this module by navigating to this link

There is a direct link to the requirements list if you mouse over the Requirements header

Note the chain icon to the right of the header. That link will lead you here.

Installing a development copy of F5 SDK

One behavior that is frequently done is the installation of a development copy of the F5 Python SDK. This
is usually safe to do as the SDK is always in-line with the Ansible modules.

To do this, run the following command:

pip install --upgrade git+https://github.com/F5Networks/f5-common-python.git

This is usually a required step for Ansible upgrades and future releases of Ansible because we often include
new APIs in the SDK that Ansible will make use of.

14

http://docs.ansible.com/ansible/latest/bigip_selfip_module.html
http://docs.ansible.com/ansible/latest/bigip_selfip_module.html#requirements-on-host-that-executes-module

3.1.3 Expected File Layout

Problem

You need to know how you should arrange files on disk so that Ansible can find them

Solution

You should create the following directory structure when using Ansible.

.
?- ansible.cfg
?- inventory
| ?- group_vars
| | ?- all.yaml
| ?- host_vars
| | ?- host1.yaml
| ?- hosts
?- library
?- playbooks
| ?- site.yaml
?- files
?- roles
?- scripts
?- templates

The above assumes the following,

• you have a single host named host1

• you have a single playbook named site.yaml

More should be added as necessary. Empty directories are not required.

Discussion

Each directory in Ansible has a specific purpose. You may not use all of these directories in your day-to-day
work, and that’s fine. You can remove empty directories as needed.

In its simplest format, Ansible requires only two files to work; an inventory and a playbook. As indicated in
the solution above, we do not recommend you follow that design.

Until you have sufficient knowledge of how Ansible’s parts work, it is better that you use the solution above
so that any modules you may use (in any place you use them) will work.

Directories that are optional are,

• files

• library

• roles

• scripts

• templates

The purpose of each directory is the following,

• files

15

– contains non-templates files to be used by the copy module

• library

– contains third-party Ansible modules that you want to use in your playbook

• roles

– contains roles that you want to use in your playbook

• scripts

– contains shell scripts that will be referenced by the script module

• templates

– contains files that will be treated as templates and referenced by the

template module.

3.1.4 Installing unstable modules

Problem

You need to install an unstable F5 Ansible module

Solution

The procedure for this is documented here. We will use bigip_software for this example.

Ensure that you have created a directory named library as shown in 1.3 Expected File Layout .

Next, download the source for this module using curl

curl -o library/bigip_software.py https://raw.githubusercontent.com/F5Networks/f5-
→˓ansible/devel/library/bigip_software.py

You can now use the module as documented in its examples.

Discussion

Our unstable code exists for the following reasons,

• We do not want to upstream everything. This may be because the underlying product is immature or
not fully supported

• Due to the above, we can’t put it into upstream Ansible. If we did, this would create a support liability
for us.

• It allows us to work independently of anything Ansible does.

Will you need to get unstable code? Probably.

In many cases, the unstable code is just as good as what exists in Ansible today, but you won’t know this
unless you try to use it.

If you find a module in the unstable branch that is not in the stable (Ansible upstream) product, you will want
to let us know about this by filing an issue.

16

http://clouddocs.f5.com/products/orchestration/ansible/devel/usage/installing-modules.html

3.1.5 Tweaking local ansible.cfg

Problem

You need to tell Ansible how to find your unreleased modules

Solution

Create, or change, an ansible.cfg file that specifies the library setting.

I recommend that you put an ansible.cfg file at the top level of your Ansible related work.

Then add the following line to the ansible.cfg file

library = ./library

Discussion

There are a number of settings that you can change in an ansible.cfg file. The entire list is shown here.

Amongst the list of things that I routinely change, are the following

• retry_files_enabled = False

• host_key_checking = False

• roles_path = ./roles

• library = ./library

Values for paths (such as roles_path and library can be separated by a colon. For example,

roles_path = ./roles-dir-1:/path/to/absolute-dir2

I never use the system config found at /etc/ansible/ansible.cfg. This is an anti-pattern, do not do
it. Instead, put your changes for you specific project in a config file found in your project’s top-level directory.

If you use the system file, it will affect all the users of the system and all the uses of Ansible on the system.
This is almost never what you want.

3.1.6 Using static inventory

Problem

You need to have Ansible communicate with a predefined list of hosts

Solution

Use a static inventory file.

A static inventory file is a INI formatted file. Here is an example

server ansible_host=10.1.1.6
bigip ansible_host=10.1.1.4
client ansible_host=10.1.1.5

17

http://docs.ansible.com/ansible/latest/intro_configuration.html

The above text you be put in a file named hosts in the inventory directory.

You would use the inventory like so,

ansible-playbook -i inventory/hosts playbooks/site.yaml

1. Create a lab1.6 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a server host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.6

4. Add a client host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.5

5. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

Discussion

Static hosts are the original means of specifying an inventory to Ansible.

The format mentioned in the solution above includes the following information,

1. A host named bigip. This value will be put in Ansible’s inventory_hostname variable.

2. A host fact called ansible_host. This is a reserved variable in Ansible. It is used by Ansible to
connect to the remote host. Its value is 10.1.1.4.

There are many more forms of inventory than static lists. Indeed, you can also provide dynamic lists that
take the form of small programs which output specially formatted JSON.

Static lists work well for demos, ad-hoc play running, and cases when your organizations systems practically
never change. Otherwise, a dynamic source is probably better.

Dynamic sources must be written by hand if you require a specific means of getting the host informations
(for example, from a local database at your company).

There are also a number of dynamic resources that you can get from Ansible. You can find Community
contributions here, and you can find Contributions that ship with Ansible, here.

3.1.7 Installing software with apt

Problem

You need to install apache using the on an Ubuntu host

Solution

Use the apt module.

1. Create a lab1.7 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Change the playbooks/site.yaml file to resemble the following.

4. Add a server host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.6

18

https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/inventory

- name: An example install playbook
hosts: server

tasks:
- name: Install apache

apt:
name: apache2
update_cache: yes

Run this playbook, from the lab1.7 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

There are different package managers for the different distributions of Linux that exist.

In this case, we are using the apt package manager because we are on a Debian/Ubuntu based system.
On systems such as Fedora or CentOS we would use the yum, or dnf, module to install similar packages.

Be aware that the name of a package will change depending on the package manager being used.

3.1.8 Writing general files to a remote device

Problem

You need to write the contents of a file (literal) to a remote location

Solution

Use the copy module.

1. Create a lab1.8 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Change the playbooks/site.yaml file to resemble the following.

4. Add a server host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.6

- name: An example copy playbook
hosts: server

tasks:
- name: Copy a local file to the remote system

copy:
src: ../files/sample-download.txt
dest: /var/www/html/sample-download.txt

This playbooks requires a file named sample-download.txt be created in the files directory of your
lab. Therefore, create this file. You can put in it any text you want. How about,

19

This was uploaded by Ansible

Run this playbook, from the lab1.8 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

This module will take a given file, and put it on a remote system at the destination that you specify.

This module is idempotent. That means that if the remote file exists, it will not overwrite it upon subsequent
runs of the playbook.

This module, like all of the standard Ansible modules, works over SSH. Therefore, the accounts used will
be those implicitly used by Ansible unless you specify otherwise.

Ansible will SSH as the user running the playbook (by default) and use the SSH public key for that user (by
default).

Default Ansible modules (those that use SSH) will work on BIG-IP versions >= 12.0.0. They require though
that your SSH user be configured to use the “advanced” shell. They will not work using the tmsh shell.

3.1.9 Templating a file to a remote device

Problem

You need to write the contents of a file (containing variables) to a remote location

Solution

Use the template module.

1. Create a lab1.9 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Change the playbooks/site.yaml file to resemble the following.

4. Add a server host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.6

- name: An example template playbook
hosts: server

tasks:
- name: Template a file to disk

template:
src: ../templates/sample-template.txt
dest: /tmp/sample-template.txt

This playbooks requires a file named sample-template.txt be created in the templates directory of
your lab. Therefore, create this file. You can put in it any text you want. How about,

20

This was uploaded by Ansible. The remote machine info is,
name: {{ inventory_hostname }}
ip: {{ ansible_host }}

Run this playbook, from the lab1.9 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

This module will take a given file, and put it on a remote system at the destination that you specify.

This module is idempotent. That means that if the remote file exists, it will not overwrite it upon subsequent
runs of the playbook.

This module, like all of the standard Ansible modules, works over SSH. Therefore, the accounts used will
be those implicitly used by Ansible unless you specify otherwise.

Ansible will SSH as the user running the playbook (by default) and use the SSH public key for that user (by
default).

Default Ansible modules (those that use SSH) will work on BIG-IP versions >= 12.0.0. They require though
that your SSH user be configured to use the “advanced” shell. They will not work using the tmsh shell.

3.2 Module – Basic BIG-IP administration with Ansible

Once you have installed and configured Ansible, you will want to move on to doing basic administrative
tasks on the BIG-IP.

The following recipes target a common subset of work that people typically undertake when configuring
BIG-IP devices. Among the various recipes included in this chapter are means to create pools and virtual
servers, provision modules, and manage users and partitions.

We will also see recipes for modules that are used in nearly every playbook.

3.2.1 Creating a pool on BIG-IP

Problem

You need to create a pool on a BIG-IP

Solution

Use the bigip_pool module.

1. Create a lab2.1 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

21

- name: An example pool playbook
hosts: bigip
connection: local

tasks:
- name: Create web servers pool

bigip_pool:
name: web-servers
lb_method: ratio-member
password: admin
server: 10.1.1.4
user: admin
validate_certs: no

Run this playbook, from the lab2.1 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_pool module can configure a number of attributes for a pool. At a minimum, the name is
required.

This module is idempotent. Therefore, you can run it over and over again and so-long as no settings have
been changed, this module will report no changes.

Notice how we also included the credentials to log into the device as arguments to the task. This is not the
preferred way to do this, but it illustrates a way for beginners to get started without needing to know a less
obvious way to specify these values.

The module has several more options, all of which can be seen at this link. I have reproduced them below.
These are relevant to the 2.5 release of Ansible.

• description

• lb_method

• monitor_type

• monitors

• name

• quorum

• reselect_tries

• service_down_action

• slow_ramp_time

3.2.2 Writing once, re-using many times

Problem

You want to specify the values for user/pass and validate_certs only once but re-use them throughout your
tasks

22

http://docs.ansible.com/ansible/latest/bigip_pool_module.html

Solution

Use variables.

1. Create a lab2.2 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example copy playbook
hosts: bigip

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Create many pools

bigip_pool:
name: web-servers
lb_method: ratio-member
password: "{{ password }}"
server: 10.1.1.4
user: "{{ username }}"
validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab2.2 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

Variables are one of the ways in which you can set a value once and re-use it across many tasks in your
Play.

It should be noted that variables do not survive across Plays. Therefore, if you need to use them in multiple
plays, it is better to put them in a host_vars or group_vars file.

Variables are identified by their double curly braces ({{ and }}). The value in-between these braces is the
variable name.

Notice how we set our variables at the top of the play in the vars section. This is a special section of the
Playbook where you can specify variable data that will be used across this Play and this Play only.

When using variables, they must be wrapped in double quotes. You can see this in the bigip_pool task
for the password, user, and validate_certs arguments.

23

3.2.3 Creating a physical node

Problem

You need to create a node which you will assign to a pool.

Solution

Use the bigip_node module.

1. Create a lab2.3 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example virtual server playbook
hosts: bigip
connection: local

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Create node for physical machine

bigip_node:
address: 10.1.20.11
name: server
password: "{{ password }}"
server: 10.1.1.4
user: "{{ username }}"
validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab2.3 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_node module can configure physical device addresses that can later be added to pools. At
a minimum, the name is required. Additionally, either the address or fqdn parameters are also required
when creating new nodes.

This module can take hostnames using the fqdn parameter. You may not specify both the address and
fqdn.

24

3.2.4 Adding nodes to a pool

Problem

You need to assign newly created nodes to a pool

Solution

Use the bigip_pool_member module.

1. Create a lab2.4 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example pool members playbook
hosts: bigip
connection: local

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Add nodes to pool

bigip_pool_member:
description: webserver-1
host: 10.1.20.11
name: server
password: "{{ password }}"
pool: web-servers
port: 80
server: 10.1.1.4
user: "{{ username }}"
validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab2.4 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_pool_member module can configure pools with the details of existing nodes. A node that has
been placed in a pool is referred to as a “pool member”.

At a minimum, the name is required. Additionally, the host is required when creating new pool members.

25

3.2.5 Creating a virtual server on BIG-IP

Problem

You need to create a virtual server, associated with a pool, on a BIG-IP

Solution

Use the bigip_virtual_server module.

1. Create a lab2.5 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example virtual server playbook
hosts: bigip
connection: local

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Create web server VIP

bigip_virtual_server:
description: webserver-vip
destination: 10.1.1.100
password: "{{ password }}"
name: vip-1
pool: web-servers
port: 80
server: 10.1.1.4
snat: Automap
user: "{{ username }}"
profiles:
- http
- clientssl

validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab2.5 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_virtual_server module can configure a number of attributes for a virtual server. At a
minimum, the name is required.

26

This module is idempotent. Therefore, you can run it over and over again and so-long as no settings have
been changed, this module will report no changes.

Several arguments, such as policies and profiles take a list of values. If you update this list of values,
it will be reflected on the virtual server’s configuration. This includes removing items from these lists.

As an example, if you have four items in the profile list, and then you remove one, this will cause the
virtual server to be reconfigured to only have three profiles.

3.2.6 Installing an iApp template on BIG-IP

Problem

You need to install an App Services Integration iApp

Solution

Use the bigip_iapp_template module.

1. Change into the lab2.6 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example iApp template playbook
hosts: bigip
connection: local

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Add the iApp

bigip_iapp_template:
content: "{{ lookup('file', 'appsvcs_integration_v2.0.004.tmpl') }}"
password: "{{ password }}"
server: 10.1.1.4
state: present
user: admin

Run this playbook, from the lab2.6 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_iapp_template module can manage the TCL iApps that are installed on the remote BIG-IP.

27

Most arguments to the module are unnecessary because the module will attempt to parse the iApp itself to
determine the necessary values.

Nevertheless, if you do provide the values, they will override what is in content of the iApp itself.

3.2.7 Creating an HTTP service from the HTTP iApp

Problem

You need to create a service from the HTTP iApp

Solution

Use the bigip_iapp_service module.

1. Change to lab2.7 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example iApp service playbook
hosts: bigip
connection: local

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Add the iApp template

bigip_iapp_template:
content: "{{ lookup('file', '../files/f5.http.v1.2.0rc4.tmpl') }}"
password: "{{ password }}"
server: 10.1.1.4
state: present
user: admin

- name: Add the iApp Service
bigip_iapp_service:
name: http-iapp1
template: f5.http.v1.2.0rc4
password: "{{ password }}"
server: 10.1.1.4
validate_certs: "{{ validate_certs }}"
state: present
user: "{{ username }}"
parameters:
lists:
- name: irules__irules
value:

28

tables:
- name: basic__snatpool_members
- name: net__snatpool_members
- name: optimizations__hosts
- name: pool__hosts
columnNames:
- name

rows:
- row:

- internal.company.bar
- name: pool__members
columnNames:
- addr
- port
- connection_limit

rows:
- row:

- ""
- 80
- 0

- name: server_pools__servers
variables:
- name: var__vs_address
value: 1.1.1.1

- name: pm__apache_servers_for_http
value: 2.2.2.1:80

- name: pm__apache_servers_for_https
value: 2.2.2.2:80

- name: client__http_compression
value: "/#create_new#"

- name: monitor__monitor
value: "/#create_new#"

- name: monitor__uri
value: "/"

- name: net__client_mode
value: wan

- name: net__server_mode
value: lan

- name: pool__addr
value: 10.10.10.10

- name: pool__pool_to_use
value: "/#create_new#"

- name: pool__port
value: 80

- name: ssl__mode
value: no_ssl

- name: ssl_encryption_questions__advanced
value: no

- name: ssl_encryption_questions__help
value: hide

Run this playbook, from the lab2.7 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

29

Discussion

The bigip_iapp_service module can manage the iApp services that are on the remote BIG-IP.

The easiest way to provide data to this module is in the form of a content lookup, providing the path to a
file containing the parameters argument.

To use that approach would require a JSON file and a specific format of Task in your Playbook. An example
is below.

- name: Add the iApp
bigip_iapp_service:
name: http-iapp2
template: f5.http
password: "{{ password }}"
server: 10.1.1.4
validate_certs: "{{ validate_certs }}"
state: present
user: "{{ username }}"
parameters: "{{ lookup('file', '../files/http-iapp-parameters.json') }}"

Observe how we changed the parameters to use a lookup instead of providing the YAML format.

The syntax for a lookup is similar to normal Ansible variables, in that it is wrapped in {{ and }}. It differs
though in its use a the following command.

• lookup('file', '/path/to/file')

You can read this in the same way you might read a function in a programming language.

The lookup word is the same of a method that Ansible makes available to you. Next, is the word file
wraped in quotes. This is a type of lookup. There are many types of lookups that you can use. Finally is
the path on the filesystem that you want to look up. That is in the /path/to/file/ value; also wrapped
in quotes.

The parentheses (and) are also important, and required, in the places that you see them.

Configure the lab2.7/playbooks/site.yaml above to replace your existing task with the task in the
Discussion. Run the playbook as you did earlier. You should observe similar behavior as before, except a
different iApp service, http-iapp2 should now exist.

Also, yes, in the solution’s example, the parameters argument really looks like that; the iApp service data
structures them self are responsible for that. We (F5 Ansible modules) may be able to improve upon this in
the future.

3.2.8 Provisioning ASM

Problem

You need to provision ASM on the BIG-IP

Solution

Use the bigip_provision module.

1. Create a lab2.8 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

30

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example provision playbook
hosts: bigip
connection: local

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Provision ASM

bigip_provision:
name: asm
password: "{{ password }}"
server: 10.1.1.4
validate_certs: "{{ validate_certs }}"
user: "{{ username }}"

Run this playbook, from the lab2.8 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_provision module can provision and de-provision modules from the system.

This module will wait for a provisioning action to fully complete before it allows the Playbook to proceed to
the next task. This includes waiting for the system to reboot and for MCPD to come online and be ready to
take new configuration.

All of the above also applies to ASM.

The level that all modules are provisioned at is nominal by default. This can be changed using the level
argument. Valid choices are,

• dedicated

• nominal

• minimum

This module is smart enough to known when certain modules require specific provisioning levels. For
example, vCMP is always dedicated.

3.2.9 Applying an ASM policy

Problem

You need to apply an ASM policy to the BIG-IP

31

Solution

Have on-hand an ASM policy in one of the following formats

• Compact

• Non-compact

• Binary

Use the bigip_asm_policy to put the Policy on the BIG-IP and activate it.

Note: You will still need to add this policy to a virtual server using the bigip_virtual_server module.

1. Change into the lab2.9 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example ASM policy playbook
hosts: bigip
connection: local

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Create ASM policy, compact XML file

bigip_asm_policy:
name: foo-policy
file: ../files/v2_policy_compact.xml
active: yes
user: "{{ username }}"
password: "{{ password }}"
server: 10.1.1.4
validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab2.9 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

Uploading and applying ASM policies is as easy as just specifying the policy you want to put on the device.

This module supports all of the types of policies that you can put on a device. It will also support putting
ASM policies on older versions of BIG-IP (they changed things in or around 12.1.0)

Obviously, policies created and exported on newer releases of BIG-IP are not backwards compatible with
older releases of BIG-IP.

32

3.2.10 Creating an LTM policy with rules

Problem

You need to create an LTM policy with an ASM rule on a BIG-IP

Solution

Use the bigip_policy module to create a policy with a generic rule. Then use the bigip_policy_rule
module to modify the actions and conditions on that rule as needed.

1. Change into the lab2.10 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example LTM policy playbook
hosts: bigip
connection: local

vars:
validate_certs: no
username: admin
password: admin
policy_name1: my-ltm-policy

tasks:
- name: Provision ASM

bigip_provision:
module: asm
password: "{{ password }}"
server: 10.1.1.4
validate_certs: "{{ validate_certs }}"
user: "{{ username }}"

- name: Create ASM policy
bigip_asm_policy:
name: foo-policy
file: ../files/v2_policy_compact.xml
password: "{{ password }}"
server: 10.1.1.4
validate_certs: "{{ validate_certs }}"
user: "{{ username }}"

- name: Create published policy with 1 stubbed rule
bigip_policy:
name: "{{ policy_name1 }}"
state: present
rules:
- rule1

password: "{{ password }}"
server: 10.1.1.4

33

validate_certs: "{{ validate_certs }}"
user: "{{ username }}"

- name: Attach ASM policy to LTM policy rule
bigip_policy_rule:
policy: "{{ policy_name1 }}"
name: rule1
actions:
- type: enable
asm_policy: foo-policy

password: "{{ password }}"
server: 10.1.1.4
validate_certs: "{{ validate_certs }}"
user: "{{ username }}"

Run this playbook, from the lab2.10 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_policy module is used for several purposes.

First, it creates the containers that can actually contain rules.

Second, it is used to stub out lists of rules before you actually configure those rules. This is handy when
you need to arrange the rule order of the policy. Since rules can be applied in a specific order, using the
bigip_policy module can set that order (using stub rules) before you actually go about creating the
rules.

If you create rules later, they will always be appended to the list of current rules. Obviously this may not
be what you want, so the bigip_policy module can be used to re-arrange them. Just specify the list of
rules in the order you want them applied.

At the time of this writing, only a handful of conditions and actions are available for use in the
bigip_policy_rule module. You may file an issue. if you need a particular condition or action added.

Available conditions types are,

• http_uri

• all_traffic

Available actions types are

• forward (this is used in conjunction with pools)

• enable (this is used in conjunction with ASM policies)

• ignore

In addition to these types, there is also (usually) a value that you will supply so that a particular type can
take effect. These are all documented in the ansible-doc for the bigip_policy_rule module.

Some of them are

• path_begins_with_any

• asm_policy

• pool

34

The documentation outlines which values to specify in which cases.

3.2.11 Creating a new partition

Problem

You need to create separate partitions on the BIG-IP for different tenants or resource management

Solution

Use the bigip_partition module.

1. Create a lab2.11 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example partition playbook
hosts: bigip
connection: local

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Create partition

bigip_partition:
name: my-partition
password: "{{ password }}"
server: 10.1.1.4
validate_certs: "{{ validate_certs }}"
user: "{{ username }}"

Run this playbook, from the lab2.11 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_partition module can manage partitions on the system.

Partitions can be used in other modules after they are created. To use them in modules that support them,
provide the partition parameter.

Some modules, such as bigip_selfip allow you to modify resources that can exist in another partition.
In you want to do this, name those resources explicitly using their full path (i.e., /foo/vlan1). If you do
not name the full path, the module in question will assume the partition that is supplied in the partition
argument. By default, this is Common.

35

At the time of this writing, partitions can not be removed until all of the resources under them have been
removed. We realize this is a source of pain, but there is truly no supported way of removing a partition and
all of its resources. A future update will provide a workaround.

3.2.12 Saving your configuration

Problem

You need to save the running configuration of a BIG-IP

Solution

Use the bigip_config module.

1. Create a lab2.12 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example configuration saving playbook
hosts: bigip
connection: local

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Save running configuration

bigip_config:
save: yes
password: "{{ password }}"
server: 10.1.1.4
validate_certs: "{{ validate_certs }}"
user: "{{ username }}"

Run this playbook, from the lab2.12 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_config module has several purposes, one of which is to save your configuration.

In addition to this, you can merge an existing configuration that you might have (in the SCF format) into the
running configuration using the merge_content argument..

You can also reset the running configuration, should you so desire, using the reset argument.

36

3.2.13 Waiting for your device to (re)boot

Problem

You need to reboot the BIG-IP and wait for it to come back up

Solution

Reboot the device with bigip_command, then use bigip_wait to wait for the device to come back up
and be ready to take configuration.

1. Create a lab2.13 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example configuration saving playbook
hosts: bigip
connection: local

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Reboot BIG-IP

bigip_command:
commands: tmsh reboot
user: "{{ username }}"
password: "{{ password }}"
server: 10.1.1.4
validate_certs: "{{ validate_certs }}"

ignore_errors: true

- name: Wait for shutdown to happen
pause:
seconds: 90

- name: Wait for BIG-IP to actually be ready
bigip_wait:
user: "{{ username }}"
password: "{{ password }}"
server: 10.1.1.4
validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab2.13 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

37

Discussion

Waiting for the BIG-IP to be available is actually a really difficult thing to do. It gets better in later versions of
BIG-IP (13.1 and beyond). For those and all the earlier releases (back to 12.0.0) you can use this module.

This module will not return until the BIG-IP is ready to take configuration. This means that it will wait for,

• mcpd

• iControl REST

• ASM

• vCMP

Notice that I mentioned several features that themselves are problematic to wait for. This module will
accommodate them.

Once this module returns (and Ansible moves on to the next Task) you will be able to use any F5 Ansible
module that would change the configuration.

3.2.14 Changing the root password

Problem

You need to change the password of the root user

Solution

Use the bigip_user module.

1. Create a lab2.14 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example user modification playbook
hosts: bigip
connection: local

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Change root password

bigip_user:
username_credential: root
password_credential: ChangedPassword1234
password: "{{ password }}"
server: 10.1.1.4

38

validate_certs: "{{ validate_certs }}"
user: "{{ username }}"

Run this playbook, from the lab2.14 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_user module can manage user accounts across the system.

Specifying the users and credentials that you want to modify are done by providing the
username_credential or password_credential respectively.

In most cases, this module is idempotent. The way it achieves idempotency for password changes is that
it will attempt to log in to the REST API as the specified username_credential. If this succeeds, the
password is assumed to have already been changed, and it will not attempt to change it again.

There is one case where this idempotency for passwords is not supported; the root account.

While we can change the root account via the REST API, there is no way to subsequently log into the box
as the root user to verify the password has already been changed. Therefore, for the root user, and the
root user only, a changed event will be raised whenever you change its password.

Because of this, it is recommended that you put any Tasks that change the root user account into their own,
infrequently used, Playbooks.

3.3 Module – Slightly more advanced Ansible usage

Basic administration should serve you well for quite some time.

As you become more seasoned in using the tool and understanding the way that both Ansible and your
BIG-IP behave, you will want to begin to brave the world of more advanced playbook and deployment
scenarios.

The recipes in this chapter look at even more modules, some of which you may use less often than others.

Throughout the course of this chapter we will also explore topics in Ansible that are a step beyond basic.
These include prompts, encrypted files, and interrupting the flows of the a play through the use of custom
arguments.

3.3.1 Prompting for user input

Problem

You need to prompt the user to provide a password to Ansible

Solution

Use the vars_prompt block in your Playbook.

1. Create a lab3.1 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

39

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example prompting playbook
hosts: server

vars_prompt:
- name: partition

prompt: "Enter a partition name"
default: "Common"

tasks:
- name: Print out your input

debug:
msg: "You provided the {{ partition }} partition for the 'partition'

→˓prompt"

Run this playbook, from the lab3.1 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

Prompting is a great way to get input from the user. It can function in both an interactive, and non-interactive
way. We will learn later about that 1.3 Expected File Layout .

Prompts can also blot out the values that you provide, so they can be useful insinuations where you prompt
for a password. This removal of input is done with the private keyword to the prompt, such as

vars_prompt:
- name: "some_password"

prompt: "Enter password"
private: yes

By default, private-ness is disabled.

You may want to use this instead of storing the password credentials in the playbook.

1. Type the following into the playbooks/site2.yaml file.

- name: An example pool playbook
hosts: bigip
connection: local

vars_prompt:
- name: "username"

prompt: "Enter BIG-IP username"
private: yes

- name: "password"
prompt: "Enter BIG-IP password"
private: yes

40

tasks:
- name: Create web servers pool

bigip_pool:
name: web-servers
lb_method: ratio-member
password: "{{ password }}"
server: 10.1.1.4
user: "{{ username }}"
validate_certs: no

Run this playbook, from the lab3.1 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site2.yaml

3.3.2 Keeping secrets secret

Problem

You need to store passwords for use in Ansible

Solution

Use ansible-vault.

The ansible-vault command has three subcommands that are frequently used.

• create

• edit

Creating

Use create to create the initial files that will be vault encrypted. When you use the create subcommand,
Vault will prompt you for a password. It will then open up a text editor for you to write data to it. Data of any
form can be written, but text is usually the format that is used.

$ ansible-vault create foo.bar
New Vault password:
Confirm New Vault password:
$

When you save and quit the editor, the file will automatically be encrypted for you. You can look at the
encrypted file by cat’ing it.

$ cat foo.bar
$ANSIBLE_VAULT;1.1;AES256
3136653738353561303430646162386631613739306236386538396637326631383930623232663633306433633865343636393630376136303463396435
38390a32373037313030653365613963643237643033663164376264313637
61636134633863356536386133383065376533643864356362653737396632
33373531650a39643034336463326138653439633637643033363735383665
64313134613337
$

41

Editing

You may edit an existing Vault file by using a similar command

$ ansible-vault edit foo.bar
Vault password:

This time you will be asked for the password so that you can decrypt the file.

Discussion

Vault is a tool that comes pre-installed with Ansible. It is a decent way to protect data that is not publicly
available. If you want to make data publicly available, it is recommended that you use a technology like
GPG.

Vault requires that a password be specified so that it can decrypt files. That password can either be specified
on the CLI or in a file.

It is recommended that for automation, this information is stored in a file.

If you store the password in a file, you can provide this file with the --vault-password-file argument
to the ansible-vault command. This file does not need to be static though. It can also be a script
that gets the password dynamically. For instance, if you stored the password itself in a organization wide
password-manager.

3.3.3 Local connection versus delegation

Problem

You need to know when to use connection: local and delegate_to: localhost

Solution

An explanation of the difference between these two is here. It is reprinted here for your convenience.

There are three major differences between connection: local` and ``delegate_to:
localhost:

• connection: local applies to all hosts

• delegate_to applies to specific hosts

• delegate_to runs your task on one host, in the context of another host

Connection: local

First, connection: local applies to all hosts in the playbook. If you find yourself mixing and matching
BIG-IP hosts with things like web servers, it would cause your legitimate ssh connections to fail.

This is because when you specify connection: local, every host is now considered to have 127.0.0.1
as their IP address.

This is likely not what you want.

For example,

42

http://clouddocs.f5.com/products/orchestration/ansible/devel/usage/connection-local-or-delegate-to.html

1. Create a lab3.3 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a server host to the ansible inventory and give it,

• an ansible_host fact with the value 10.1.1.6

4. Type the following into the playbooks/site.yaml file.

- name: This is my play
hosts: server
connection: local

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Disable pool member for upgrading
bigip_pool_member:
pool: web-servers
port: 80
name: "{{ inventory_hostname }}"
monitor_state: disabled
session_state: disabled
password: "{{ password }}"
server: 10.1.1.4
user: "{{ username }}"
validate_certs: "{{ validate_certs }}"

- name: Upgrade the webserver
apt:
name: apache2
state: latest

- name: Re-enable pool member after upgrading
bigip_pool_member:
pool: web-servers
port: 80
name: "{{ inventory_hostname }}"
monitor_state: enabled
session_state: enabled
password: "{{ password }}"
server: 10.1.1.4
user: "{{ username }}"
validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab3.3 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

This playbook will run, but it’s actually not correct. The reason is because of the second task.

The second task is not what you want because it attempts to run the apt module on your local machine.
Your playbook, however, intended to upgrade the remote webserver.

So you installed apache on the Ansible controller machine.

43

You can verify this with the following command

• dpkg --list | grep apache

For example, here is the output on my ansible controller

$ dpkg --list | grep apache
ii apache2 2.4.18-2ubuntu3.5
→˓ amd64 Apache HTTP Server
ii apache2-bin 2.4.18-2ubuntu3.5
→˓ amd64 Apache HTTP Server (modules and other binary files)
ii apache2-data 2.4.18-2ubuntu3.5
→˓ all Apache HTTP Server (common files)
ii apache2-utils 2.4.18-2ubuntu3.5
→˓ amd64 Apache HTTP Server (utility programs for web servers)

Whoops.

You can remove apache on the Ansible controller with this command

• apt-get remove --purge apache2*

Delegation

You can remedy this situation with delegate_to. For the most part, you will use this feature when the
connection line is set to ssh (the default).

Delegation allows you to mix and match remote hosts. You continue to use an SSH connection for legitimate
purposes, such as connecting to remove servers, but for the devices that don’t support this option, you
delegate their tasks.

For example, this playbook will correct your problem:

1. Change your playbooks/site.yaml file to reflect the changes below.

- name: This is my play
hosts: server

vars:
validate_certs: no
username: admin
password: admin

tasks:
- name: Disable pool member for upgrading
bigip_pool_member:
pool: web-servers
port: 80
name: "{{ inventory_hostname }}"
monitor_state: disabled
session_state: disabled
password: "{{ password }}"
server: 10.1.1.4
user: "{{ username }}"
validate_certs: "{{ validate_certs }}"

delegate_to: localhost

44

- name: Upgrade the webserver
apt:
name: apache2
state: latest

- name: Re-enable pool member after upgrading
bigip_pool_member:
pool: web-servers
port: 80
name: "{{ inventory_hostname }}"
monitor_state: enabled
session_state: enabled
password: "{{ password }}"
server: 10.1.1.4
user: "{{ username }}"
validate_certs: "{{ validate_certs }}"

delegate_to: localhost

The delegate_to parameter delegates the running of the task to some completely different machine.

However, instead of the module having access to that totally different machine’s facts, it instead has the
facts of the inventory item where the delegation happened. This is using the context of the host.

We also removed the connection: local line. This means that Ansible will try to connect over SSH to all of
our hosts on the hosts: line.

Discussion

Quiz time.

In the above example, even though the first and third tasks are running on the Ansible controller (instead of
the remote webserver), what is the value of the {{ inventory_hostname }} variable?

1. localhost

2. server

3. something else

If you answered server then you are correct.

This is context. The task executed on localhost using server’s context, and therefore, its facts.

3.3.4 Starting the playbook at a specific task

Problem

You need to start at a specific task in a playbook

Solution

Use the --start-at-task argument of ansible-playbook

1. Create a lab3.4 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

45

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example start-at playbook
hosts: bigip
connection: local

environment:
F5_SERVER: "{{ ansible_host }}"
F5_USER: admin
F5_PASSWORD: admin
F5_SERVER_PORT: 443
F5_VALIDATE_CERTS: no

vars:
send_string1: "GET /bizdev\r\n"
monitor_name: "monitor1"

tasks:
- name: Create HTTP Monitor
bigip_monitor_http:
name: "{{ monitor_name }}"
send: "{{ send_string1 }}"

register: result

- name: Assert Create HTTP Monitor
assert:
that:
- result is changed
- result.send == send_string1

- name: Create HTTP Monitor - Idempotent check
bigip_monitor_http:
name: "{{ monitor_name }}"
send: "{{ send_string1 }}"

register: result

- name: Assert Create HTTP Monitor - Idempotent check
assert:
that:
- result is not changed

You can see that we have 4 Tasks in this Playbook.

You can run this Playbook once and it will do its thing. Then, assume that you want to run the playbook
again, but you want to start at the Create HTTP Monitor - Idempotent check Task.

You can do this by specifying the Task name to the ---start-at-task argument.

$ ansible-playbook -i inventory/hosts playbooks/site.yaml --start-at-task
→˓"Create HTTP Monitor - Idempotent check"

The Play will run, but will start at the third Task this time.

But there’s an error that’s raised. Why?

46

The answer, is because you started at the task which is intended to be the idempotent check. Run the
playbook again. Does the result change?

Discussion

This argument is extremely valuable when it comes to debugging or running specific blocks of a Playbook
over.

There are certain things that you need to be aware of when using this argument though.

1. It will not run any prior tasks. Therefore, if you will start at (or have a future) Task that relies on some
information from before the Task you are starting it, it will not be available. This will cause your Play
to fail when it reaches the Task that needs this information

2. If you have multiple Tasks with the same name, the first Task found is the one that will be used.

3. ALWAYS NAME YOUR TASKS!!1!!1!!!!!1 if you do not, it makes it incredibly difficult to start-at them
in the future.

4. If the Task you are starting at is in a role, prefix the role name to the task followed by spacing and a
colon. For example, --start-at-task "role1 : This is my roles task"

Despite the constraints, this is a go-to feature that you will use all the time. Remember it.

3.3.5 Stepping through a playbook

Problem

You need to step through each task because, by default, Ansible will fire off tasks as fast as possible

Solution

Use the --step argument of ansible-playbook

1. Create a lab3.5 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example stepped playbook
hosts: bigip
connection: local

environment:
F5_SERVER: "{{ ansible_host }}"
F5_USER: admin
F5_PASSWORD: admin
F5_SERVER_PORT: 443
F5_VALIDATE_CERTS: no

vars:
send_string1: "GET /hr\r\n"

47

monitor_name: "monitor2"

tasks:
- name: Create HTTP Monitor

bigip_monitor_http:
name: "{{ monitor_name }}"
send: "{{ send_string1 }}"

register: result

- name: Assert Create HTTP Monitor
assert:
that:
- result is changed
- result.send == send_string1

- name: Create HTTP Monitor - Idempotent check
bigip_monitor_http:
name: "{{ monitor_name }}"
send: "{{ send_string1 }}"

register: result

- name: Assert Create HTTP Monitor - Idempotent check
assert:
that:
- result is not changed

- name: Remove HTTP Monitor
bigip_monitor_http:
name: "{{ monitor_name }}"
state: absent

register: result

You can see that we have 5 Tasks in this Playbook.

You have this test playbook, but you are not sure if they Tasks are actually doing their work because the
last Task removes the monitor. How do you check that 1 actually changed the remote device? Sure, it may
report changed, but did it really change?

You can do this by specifying the ---step argument to your Playbook.

$ ansible-playbook -i inventory/hosts playbooks/site.yaml --step

The Play will run, but will Ansible will prompt you to either do the Task, Skip the Task, or Continue on with
all Tasks.

For example,

$ ansible-playbook -i inventory/hosts playbooks/site.yaml --step

PLAY [An example partition playbook]
→˓**
Perform task: TASK: Gathering Facts (N)o/(y)es/(c)ontinue: y

Perform task: TASK: Gathering Facts (N)o/(y)es/(c)ontinue:
→˓***

TASK [Gathering Facts]
→˓***
ok: [bigip1]

48

Perform task: TASK: Create HTTP Monitor (N)o/(y)es/(c)ontinue:
^C

$

Discussion

Stepping is something I use frequently when I am writing a Playbook initially. Between each step, Ansible
will pause indefinitely and let you do something out-of-band of the Playbook.

Often, I will do a task, then do either a series of debug work, or configuration validation. For example, if I
am using a new module, did the module actually change my BIG-IP as I expected it would?

For debugging, I can pause right before a Task and make sure that,

• the device is indeed ready for my config

• any log files I am going to tail are empty so I don’t need to go look through them

• Any debug-level logging is configured on any remote devices

• etc

I can then run the Task, and proceed with the other future Tasks as needed. Once I am ready to quit, I can
ctrl+c the Playbook to stop all execution. Or, I can press c to tell Ansible to proceed on with the entire
rest of the Playbook.

3.3.6 Sending arguments to your playbook

Problem

You need to specify “vars” values automatically, such as via a command line.

Solution

Use the -e, or --extra-vars argument of ansible-playbook

Remember the Playbook we had back in Lab 3.1? That Playbook prompted us for variables every time we
ran it. Now we want to run the same playbook without getting those prompts.

We can supply the prompt variable names, and their values, on the command line.

1. Change into the lab3.1 directory.

Run this playbook, from the lab3.1 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml -e "username=admin
→˓password=admin"

Discussion

This method of specifying values is not reserved for credentials.

In most cases, it should not be used for credentials in fact. This is because the Ansible command (including
the extra arguments) will show in the running process list of your Ansible controller.

49

The more common situations are when you are prompting for specific configuration related to something on
your network. For example, your Playbook may be flexible enough to take a given region or cell.

This would look like the following

$ ansible-playbook -i inventory/hosts bootstrap.yaml -e "region=ord
→˓cell=c0006"

The Playbook would not need to change, but you could continually provide values to variables in the Play-
book to keep from writing them into the actual Playbook itself.

3.3.7 Creating iRules from a list, with loop

Problem

You need to upload a series of iRules to a BIG-IP

Solution

Use the bigip_irule module and the loop keyword.

1. Change into the lab3.7 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Change the playbooks/site.yaml file to resemble the following.

4. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

- name: An example looping iRule playbook
hosts: bigip
connection: local

environment:
F5_SERVER: "{{ ansible_host }}"
F5_USER: admin
F5_PASSWORD: admin
F5_SERVER_PORT: 443
F5_VALIDATE_CERTS: no

tasks:
- name: Create iRule in LTM

bigip_irule:
content: "{{ lookup('file', item.file) }}"
module: ltm
name: "{{ item.name }}"

loop:
- name: irule1
file: ../files/irule-01.tcl

- name: irule2
file: ../files/irule-02.tcl

- name: irule3
file: ../files/irule-03.tcl

50

Run this playbook, from the lab3.7 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

iRules are managed on the remote system using the bigip_irule module. Since the possibility exists
though that there may be many iRules you want to upload, one way of accomplishing that is to use the loop
keyword in Ansible.

Notice that the loop keyword itself is not a parameter to the module because it is not vertically aligned with
the parameters underneath the bigip_irule YAML above.

Instead, this keyword is internal to Ansible itself. It’s available to nearly every module. Therefore you can
loop with things like pools, virtual servers, nodes, etc.

The way to correctly read the above is, “run the bigip_irule module for each item in the loop list”.

There are also variables in the above playbook that we haven’t seen before; item.name and item.file.
What do these mean?

When you use the loop construct, it will automatically create a variable for you called item. The value in
this variable will change with each iteration of the loop to match the value in the loop.

The dot that separates item from the other words is Ansible lingo for a method of referring to subkeys.

In our loop list, we specified a list of dictionaries. A dictionary has key names, and those names can have
values of any type. In our case, the key names for each item in the list are name and file.

Therefore, when we refer to the variable item.name we are referring to the name key’s value of the current
item in the list.

The above loop causes the task to run three times; one for each item in the loop.

3.3.8 The fallback F5 module for when there is no idempotent module

Problem

You need to use a tmsh command that does not have an Ansible module equivalent

Solution

Use the bigip_command module

1. Create a lab3.8 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

4. Type the following into the playbooks/site.yaml file.

- name: An example command playbook
hosts: bigip
connection: local

51

environment:
F5_SERVER: "{{ ansible_host }}"
F5_USER: admin
F5_PASSWORD: admin
F5_SERVER_PORT: 443
F5_VALIDATE_CERTS: no

tasks:
- name: Create a datagroup using tmsh

bigip_command:
commands: "create /ltm data-group internal applicationIdRealm type

→˓string records add { epc.foo.bar.org { data 16777264 } }"

Run this playbook, from the lab3.8 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

This module is what we recommend for all situations where you need to do something that a current module
does not support.

This module will always warn you when you use it for things that change configuration. These warnings will
inform you to file an issue on our Github Issue tracker for a feature enhancement.

Ultimately, the goal we want to get to is to have a suite of modules that meets all the needs of customers
that use Ansible. Since that is not yet possible, the bigip_command is there to accommodate.

This module can also be used over SSH, but password SSH is the only method known to work at this time.

3.3.9 Running in a virtualenv, and the associated problems

Problem

You need to run Ansible from a Python virtualenv environment

Solution

This is possible, but it requires a keen understanding of how Ansible works, as well as a change to the
host_vars for a single host (or group_vars if you want to apply this to multiple hosts)

1. Change into the lab3.9 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Change the playbooks/site.yaml file to resemble the following.

4. Add a bigip host to the ansible inventory and give it an ansible_host fact with the value 10.1.
1.4

- name: An example command playbook
hosts: bigip
connection: local

52

environment:
F5_SERVER: "{{ ansible_host }}"
F5_USER: admin
F5_PASSWORD: admin
F5_SERVER_PORT: 443
F5_VALIDATE_CERTS: no

tasks:
- name: Create a datagroup using tmsh

bigip_command:
commands: "tmsh show sys version"

Next, we will uninstall our f5-sdk package from the system. Most people consider this to be an OK thing to
do because, after all, they will be running Ansible from a virtualenv.

pip uninstall --yes f5-sdk bigsuds

There is a virtualenv pre-installed on your Ansible Controller. You can activate it with the following command

$ source /.virtualenvs/lab3.9/bin/activate

You will know that you are in the virtualenv, because your prompt will change. It should look similar to this,
where the word ansible prefixes the CLI prompt.

(lab3.9) $

You can verify that the necessary pip libraries are installed with the following command.

$ pip freeze

You should see in this list, an entry for f5-sdk.

Let’s now run the Ansible Playbook.

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

If your playbook fails, that is to be expected.

Now, change the inventory/hosts file and add the following fact to the bigip line.

ansible_python_interpreter=/.virtualenvs/lab3.9/bin/python

Re-run the ansible-playbook command from above.

If your playbook succeeds, that is expected. Proceed to the Discussion for a deeper answer as to what is
happening.

Be sure to re-install the F5 Ansible dependencies that you removed as we will use them in future labs

$ pip install f5-sdk bigsuds

Discussion

Why does it fail the first time? The answer is because Ansible is not running your module in the virtualenv.
It’s running it on the system’s Python.

That doesn’t make sense though, it should be running be running in the virtualenv. Wrong.

53

A brief segue is necessary

Ansible’s default behavior is that it always SSH’s to the remote host. Always. Even when connection:
local is set, it is running. . . in a sense. . . on the “remote” host; only this time, localhost is considered the
remote host.

Setting connection: local only eliminates the SSH protocol, it does not, however, eliminate the fact
that Ansible is going to always run your module using /usr/bin/python.

By default, modules point at /usr/bin/python. Period.

So Ansible itself runs just fine in a virtualenv. The problem is that when it communicates with the “remote”
host, the module is going to run with /usr/bin/python. That means that the F5 dependency libraries
are also going to be looked up according to /usr/bin/python. If you installed your dependencies in a
virtualenv, that virtualenv’s python is not /usr/bin/python.

This is why you must set the ansible_python_interpreter for any hosts, or groups of hosts, where
the python interpreter differs. We did this in our solution for a single host when we changed the inventory/
hosts file. We could have also created a file at inventory/group_vars/all.yaml and those facts
would apply to all hosts in your playbook.

3.3.10 Creating roles

Problem

You need to reuse the work you have just done in other playbooks without repeatedly writing tasks.

Solution

Use Roles.

You may combine any set of Tasks that we have used previously in this role.

A role is an abstraction in which a directory named after the role is created in the roles directory. In the
first module, we learned about the expected file layout . Part of this layout is a roles directory. It is that
directory in which you put the role directory.

1. Change into the lab3.10 directory in the labs directory.

2. Setup the filesystem layout to mirror the one described in lab 1.3.

3. Make a role named app1

$ mkdir -p roles/app1

A role directory has the same directory structure that we created in the first module. There are exceptions
though. They are

• the playbooks directory has been replaced with tasks

• there is no roles directory in a role

• there is no inventory directory in a role

• When a role is included, Ansible only calls a file named main.yaml in the tasks directory

• Several new directories, such as vars and defaults are available to add

With these constraints in place, we create the following directory structure in the app1 directory.

54

.
?- defaults
| ?- main.yaml
?- files
?- tasks
| ?- main.yaml
?- templates

With this structure in place, we can cherry pick Tasks from any of our other Playbook we have written and
add them to the tasks/main.yaml file.

Our app1 role will do the following

1. consume a tenant variable, defaulting to Common

2. consume a bigip_port variable, defaulting to 443

3. consume a validate_certs variable, defaulting to no

4. consume a bigip_username variable

5. consume a bigip_password variable

6. consume a bigip_server variable

7. fail if any of the variables above are not defined

8. create a partition using the name of the tenant variable

9. create a pool named app1-pool on the tenant partition. Use the round-robin load balancing
method

10. create a single iRule using one of the same iRule files we used from the earlier lab. Name it irule1

11. create a virtual server named app1-vs on the tenant partition. Assign it the iRule and pool you
created. It should have a destination of 10.1.10.240 and a port of 80. Finally, set snat to Automap

12. create a node for each host in the playbook using the current ansible_host IP address

13. add the node to the app1-pool pool

14. Save the running configuration

To accomplish the above, let’s do the following

Construct a playbook to use your role

Create the file playbooks/site.yaml in the lab3.10 directory; not the role directory. Put the following
in it.

- name: Use app1 role
hosts: app1
connection: local

vars_prompt:
- name: bigip_username

prompt: "Enter the BIG-IP username"
private: no

- name: bigip_password
prompt: "Enter the BIG-IP password"

55

private: yes
- name: bigip_server

prompt: "Enter the BIG-IP server address"
private: no

roles:
- app1

This is the playbook we will use.

Create default variables

In the app1 role directory, edit the defaults/main.yaml file, add the following

tenant: Common
bigip_port: 443
validate_certs: no

This accomplishes bullets #1 to #3

Create a setup task list

Create the file tasks/setup.yaml

In this file, put the following

- name: Check to see if bigip username credential missing
fail:

msg: "You must provide a 'bigip_username' variable"
when: bigip_username is not defined

- name: Check to see if bigip passwrd credential missing
fail:

msg: "You must provide a 'bigip_password' variable"
when: bigip_password is not defined

- name: Check to see if bigip server credential missing
fail:

msg: "You must provide a 'bigip_server' variable"
when: bigip_server is not defined

This accomplishes bullets #4 to #7

Create a main task list

Edit the tasks/main.yaml file to include the following

- import_tasks: setup.yaml

56

- name: Create tenant partition
bigip_partition:

name: "{{ tenant }}"
user: "{{ bigip_username }}"
password: "{{ bigip_password }}"
validate_certs: "{{ validate_certs }}"
server: "{{ bigip_server }}"
server_port: "{{ bigip_port }}"

delegate_to: localhost

- name: Create pool
bigip_pool:

name: "{{ tenant }}-pool1"
lb_method: round-robin
partition: "{{ tenant }}"
user: "{{ bigip_username }}"
password: "{{ bigip_password }}"
validate_certs: "{{ validate_certs }}"
server: "{{ bigip_server }}"
server_port: "{{ bigip_port }}"

delegate_to: localhost

- name: Create iRule
bigip_irule:

content: "{{ lookup('file', 'irule-01.tcl') }}"
module: ltm
name: irule1
partition: "{{ tenant }}"
user: "{{ bigip_username }}"
password: "{{ bigip_password }}"
validate_certs: "{{ validate_certs }}"
server: "{{ bigip_server }}"
server_port: "{{ bigip_port }}"

delegate_to: localhost

- name: Create virtual server
bigip_virtual_server:

name: app1-vs
destination: "{{ vs_destination }}"
port: 80
irules:

- irule1
profiles:

- http
snat: Automap
partition: "{{ tenant }}"
user: "{{ bigip_username }}"
password: "{{ bigip_password }}"
validate_certs: "{{ validate_certs }}"
server: "{{ bigip_server }}"
server_port: "{{ bigip_port }}"

delegate_to: localhost

- name: Create node for physical machine
bigip_node:

address: "{{ node_destination }}"
name: "{{ inventory_hostname }}"

57

user: "{{ bigip_username }}"
password: "{{ bigip_password }}"
validate_certs: "{{ validate_certs }}"
server: "{{ bigip_server }}"
server_port: "{{ bigip_port }}"

delegate_to: localhost

- name: Add node to pool
bigip_pool_member:

pool: "{{ tenant }}-pool1"
partition: "{{ tenant }}"
host: "{{ node_destination }}"
port: 80
user: "{{ bigip_username }}"
password: "{{ bigip_password }}"
validate_certs: "{{ validate_certs }}"
server: "{{ bigip_server }}"
server_port: "{{ bigip_port }}"

delegate_to: localhost

- name: Save running config
bigip_config:

save: yes
user: "{{ bigip_username }}"
password: "{{ bigip_password }}"
validate_certs: "{{ validate_certs }}"
server: "{{ bigip_server }}"
server_port: "{{ bigip_port }}"

delegate_to: localhost

This accomplishes bullets #8 to #14

Move files to the appropriate directories

In the task list above, we use an iRule file. To make use of it in this role, we need to put it in the files
directory because we used the file lookup.

From the lab3.10 directory, issue the following command

cp files/irule-01.tcl roles/app1/files/

Run the playbook

With the above in place, you can run the playbook as you normally would

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Your play, and role, should execute as expected and configure the device.

Discussion

As you can see from the solution above, a role is a way to encapsulate a body of work. This role could have
been zipped up and given to anyone else and they could have extracted it and run it the same way that you
did.

58

Roles can include their own files, templates, and even custom modules. They should be your go-to solution
for all your work that is beyond a single playbook.

With our solution in place, our directory structure now looks like this

.
?- defaults
| ?- main.yaml
?- files
| ?- irule-01.tcl
?- tasks
| ?- main.yaml
| ?- setup.yaml
?- templates

Earlier I said that Ansible will only call the tasks/main.yaml file. That’s perfectly ok though because we
can include as many other files as we need.

We did just take with the import_tasks action in the tasks/main.yaml file. This action will cause
Ansible to read in this file and replace the import line with the content of the file.

The defaults directory we made use of stores default variables. These variables may be overridden via
the CLI as we learned in an earlier lab.

Notice also how when we used the file lookup, we didn’t need to refer to the full path to the file. This is
because, in roles, if you used the file lookup, Ansible assumes the file being looked up is in the files
directory of the role.

The template lookup works much the same way. If you use the following in a role

lookup(‘template’, ‘file.txt’)

Ansible will implicitly look in the templates directory of your role.

3.4 Module – Debugging Ansible problems

An advanced, but equally necessary topic is debugging. It is inevitable that things will go wrong.

The problem may be in the F5 modules, or even Ansible itself. When a problem arises, it is less important
that you know what the problem is, than know how to diagnose what the problem is.

These recipes will expose you to diagnosing problems with modules and how you can peel back the Ansible
layer to gain better insight into what went wrong.

3.4.1 Enable verbose debugging

Problem

You want to get more context about what is happening when a Playbook runs, because right now you have
none

Solution

Provide the -vvvv argument to the ansible-playbook command.

Enabling verbose output can be done as follows,

59

1. Change into the lab4.1 directory in the labs directory.

$ ansible-playbook -i inventory/hosts playbooks/site.yaml -vvvv

Running this will output more output that you would normally get. This playbook includes an artificial module
with an error message that would not normally be displayed if you had not included the verbose output.

This is normal output

TASK [Raises an error] ***
An exception occurred during task execution. To see the full traceback, use
-vvv. The error was: Exception: An error occurred
fatal: [localhost]: FAILED! => {"changed": false, "module_stderr": "Traceback
(most recent call last):\n File \"/Users/trupp/.ansible/tmp/ansible-tmp-1512
284216.7-97617236630854/foo41.py\", line 24, in <module>\n a1()\n File
\"/Users/trupp/.ansible/tmp/ansible-tmp-1512284216.7-97617236630854/foo41.py\
→˓",
line 13, in a1\n b1()\n File \"/Users/trupp/.ansible/tmp/ansible-tmp-
→˓15122
84216.7-97617236630854/foo41.py\", line 16, in b1\n c1()\n File \"/Users/
trupp/.ansible/tmp/ansible-tmp-1512284216.7-97617236630854/foo41.py\", line
→˓19,
in c1\n d1()\n File \"/Users/trupp/.ansible/tmp/ansible-tmp-1512284216.7-
→˓9
7617236630854/foo41.py\", line 22, in d1\n raise Exception(\"An error
→˓occur
red\")\nException: An error occurred\n", "module_stdout": "", "msg": "MODULE
FAILURE", "rc": 0}

This is verbose output

TASK [Raises an error] **
task path: /Users/trupp/src/f5-gsts-labs-ansible-cookbook/docs/labs/
→˓playbooks/lab4.1.yaml:8
Using module file /Users/trupp/src/f5-gsts-labs-ansible-cookbook/docs/labs/
→˓library/foo41.py
<localhost> ESTABLISH LOCAL CONNECTION FOR USER: trupp
<localhost> EXEC /bin/sh -c 'echo ~ && sleep 0'
<localhost> EXEC /bin/sh -c '(umask 77 && mkdir -p "` echo /Users/trupp/
.ansible/tmp/ansible-tmp-1512284240.61-66631414390058 `" && echo ansible-
tmp-1512284240.61-66631414390058="` echo /Users/trupp/.ansible/tmp/ansibl
e-tmp-1512284240.61-66631414390058 `") && sleep 0'

<localhost> PUT /var/folders/jc/9d1188j962931rhqrlm4173w5j5m45/T/tmpOT27vx TO
/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/foo41.py

<localhost> PUT /var/folders/jc/9d1188j962931rhqrlm4173w5j5m45/T/tmpZwW0ZP TO
/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/args

<localhost> EXEC /bin/sh -c 'chmod u+x /Users/trupp/.ansible/tmp/ansible-tmp-
1512284240.61-66631414390058/ /Users/trupp/.ansible/tmp/ansible-tmp-1512284
240.61-66631414390058/foo41.py /Users/trupp/.ansible/tmp/ansible-tmp-1512
284240.61-66631414390058/args && sleep 0'

<localhost> EXEC /bin/sh -c '/usr/bin/python /Users/trupp/.ansible/tmp/ansi
ble-tmp-1512284240.61-66631414390058/foo41.py /Users/trupp/.ansible/tmp/a
nsible-tmp-1512284240.61-66631414390058/args; rm -rf "/Users/trupp/.ansib
le/tmp/ansible-tmp-1512284240.61-66631414390058/" > /dev/null 2>&1 && sle
ep 0'

The full traceback is:
Traceback (most recent call last):
File "/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/

→˓foo41.py", line 24, in <module>

60

a1()
File "/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/

→˓foo41.py", line 13, in a1
b1()

File "/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/
→˓foo41.py", line 16, in b1

c1()
File "/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/

→˓foo41.py", line 19, in c1
d1()

File "/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/
→˓foo41.py", line 22, in d1

raise Exception("An error occurred")
Exception: An error occurred

fatal: [localhost]: FAILED! => {
"changed": false,
"module_stderr": "Traceback (most recent call last):\n File \"/Users/

→˓trupp/
.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/foo41.py\", line

→˓24,
in <module>\n a1()\n File \"/Users/trupp/.ansible/tmp/ansible-tmp-

→˓1512
284240.61-66631414390058/foo41.py\", line 13, in a1\n b1()\n File \

→˓"/U
sers/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/foo41.

→˓py\
", line 16, in b1\n c1()\n File \"/Users/trupp/.ansible/tmp/

→˓ansible-tm
p-1512284240.61-66631414390058/foo41.py\", line 19, in c1\n d1()\n

→˓Fil
e \"/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/

→˓foo4
1.py\", line 22, in d1\n raise Exception(\"An error occurred\

→˓")\nExcepti
on: An error occurred\n",

"module_stdout": "",
"msg": "MODULE FAILURE",
"rc": 0

}

Discussion

I don’t take my chances when running playbooks. I always use verbose logging.

You will find over time, that if you do not do this, that you will miss out on some of the more critical information
that may be required to track down a problem.

The verbose information that is shown is typically the first step in debugging a problem, and the F5 Ansible
developers will want it from you when you report a problem.

Verbose output includes several key pieces of information that will be used to debug problems even further.
These include

• The connection information

• Delegation information

61

• Remote playbook execution files

• Structured failure output

We will discuss the third bullet in more detail in a lab in the next lab.

3.4.2 Save and view remote module execution code

Problem

You need to get the actual contents of a module that are run on the remote machine

Solution

The solution to this problem is a series of steps that can be near impossible to guess at. Let’s follow these
steps to show you.

First, set the ANSIBLE_KEEP_REMOTE_FILES variable to 1 when you run a playbook. Additionally, run the
playbook with -vvv. Using the playbook in lab4.2/playbooks/site.yaml run the following command,

$ ANSIBLE_KEEP_REMOTE_FILES=1 ansible-playbook -i inventory/hosts playbooks/
→˓site.yaml -vvv

After the playbook has finished execution, note the location of the module file that was copied to the remote
machine.

The module file is buried in the verbose output that the playbook generates. Refer to the image below for
an example.

With this file found, we can ssh to the remote host in which we were running this playbook on; server

62

$ ssh 10.1.1.6

and ls the file to make sure it exists

$ ls -l /root/.ansible/tmp/ansible-tmp-1512367718.13-215224110025969/apt.py
-rwx------ 1 root root 102974 Dec 4 06:08 /root/.ansible/tmp/ansible-tmp-
→˓1512367718.13-215224110025969/apt.py
$

This file is a copy of the module and the libraries that it includes from Ansible. It can be extracted with the
explode argument

$ /root/.ansible/tmp/ansible-tmp-1512367718.13-215224110025969/apt.py explode
Module expanded into:
/root/.ansible/tmp/ansible-tmp-1512367718.13-215224110025969/debug_dir
$

It provides you with the directory where the content of the module was extracted to.

$ ls -l
total 48
drwxr-xr-x 3 root root 4096 Dec 4 06:13 ansible
-rw-r--r-- 1 root root 38495 Dec 4 06:13 ansible_module_apt.py
-rw-r--r-- 1 root root 441 Dec 4 06:13 args
$

The file named ansible_module_apt.py is the copy of module used in your task. You can edit it directly
and re-run the changed module and associated files by using the execute argument to the same script you
provided the explode argument to.

$ /root/.ansible/tmp/ansible-tmp-1512367718.13-215224110025969/apt.py execute

The module will be run as if it were being run directly from the Ansible controller.

Discussion

The method you’ve just learned is used extensively in the beginning stages of how to debug modules. Even
to this day I use it for extreme cases where I am unable to diagnose a problem and need to execute the
exact module code on a remote machine.

This method requires no remote debuggers (like may be used in typical module development or debugging)
and it’s a rather straight-forward method once you experience the usage pattern.

• ANSIBLE_KEEP_REMOTE_FILES

• /path/to/module.py explode

• change directory and edit

• /path/to/module.py execute

The reason that we need to do the explode part in particular is because Ansible compresses the files that
are part of the module, before it sends it to the remote host. This sacrifices some CPU time on the Ansible
controller for what can often be a longer time transporting data over the network.

You can actually look at the compressed form if you less the file,

63

$ less /root/.ansible/tmp/ansible-tmp-1512367718.13-215224110025969/apt.py

It will produce the self-extracting script; a large portion of which will be the compressed module data

Near the bottom of the self-extractor is also a blurb about how to use the code should you get hung up.
Here is an excerpt

64

There are three commands, but only two that are frequently used, they are

• extract

• execute

• excommunicate (almost never used)

One last thing. It is not recommended that you run all your playbook with ANSIBLE_KEEP_REMOTE_FILES
all the time. This is because keeping these remote files causes a number of temporary files to build up on
the remote host.

This can lead to disk space errors, filesystem errors, and even Ansible errors if too many temp files exist
(name collisions can happen for instance).

65

So it is best that you reserve the usage of this method for the times when you need to do serious squirrel
levels of debugging in either your own code, or the code of others.

3.4.3 Filing bugs

Problem

You need to report a bug in an F5 Ansible module

Solution

Create an issue on our Github issue tracker here

When creating issues, you will be asked to fill out a number of fields.

• Issue type

• Component name

• Ansible version

• BIGIP version

• Library versions

• Configuration

• OS/Environment

• Summary

• Steps to reproduce

• Expected results

• Actual results

It is critical that you provide as much information as possible if you hope to get your bug fixed.

Discussion

All customers, F5’ers, partners, everyone. . . needs to file issues on Github. This is a publicly operated
project and we use the publicly available Github issue tracker to manage it.

It is not acceptable to directly email Tim with a bug you found. He will direct you to the Issue tracker.

Why is it so important that you log bugs in the issue tracker? Because of the way that we manage fixes in
our source tree. Every issue has a dedicated test file that is created for it. Therefore, if you do not create
an issue, we cannot create a file in our source tree to test a fix.

I repeat, because I cannot stress this enough,

File bug reports on the F5 Ansible Github Issue Tracker

3.4.4 Getting assistance with a problem

Problem

You need to ask for help in using an F5 Ansible module or debugging a problem in a module

66

https://github.com/F5Networks/f5-ansible/issues

Solution

Use either of the following channels

• f5CloudSolutions Slack team in the #ansible channel

• Join, and send email to, *sme_ansible

Both channels are monitored with roughly equal consistency. However, if you do not receive a timely
response on one channel, consider asking on another channel

Discussion

You have the option of getting real-time interactive help (via Slack), or, semi-realtime help (via email).

The maintainers of the F5 Ansible modules are located in Seattle at the time of this writing. Therefore, it is
not always realistic to expect to get a response immediately in our Slack channel.

On both communication channels, there is a growing body of tribal knowledge being accumulated among
the channel participants. We are beginning to see several non-F5 participants helping answer questions
about our modules.

We fully encourage this to continue.

3.4.5 Enable debug output

Problem

You want to see more complete debugging when running playbooks

Solution

Set the environment variable ANSIBLE_DEBUG to 1 when you run the ansible-playbook command.

1. Change into the lab4.5 directory in the labs directory.

$ ANSIBLE_DEBUG=1 ansible-playbook -i inventory/hosts playbooks/site.yaml

Running this will output a lot more output than even the verbose output gives you. None of the debug output
is what you would normally get. This playbook is a contrived example, but illustrates debug’s output.

This is normal output

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

PLAY [Labb 4.5] ***

TASK [Gathering Facts] **
ok: [localhost]

TASK [Run a task] ***
ok: [localhost]

TASK [Run a second task] **************************************
skipping: [localhost]

TASK [Run a third task] ***************************************

67

https://f5cloudsolutions.herokuapp.com/

ok: [localhost] => {
"fact1": "foo"

}

PLAY RECAP **
localhost : ok=3 changed=0 unreachable=0 failed=0

This is verbose output (truncated for readability)

$ ANSIBLE_DEBUG=1 ansible-playbook -i inventory/hosts playbooks/site.yaml
88233 1512328569.77688: starting run
88233 1512328569.87126: Added group all to inventory
88233 1512328569.87134: Added group ungrouped to inventory
88233 1512328569.87139: Group all now contains ungrouped
88233 1512328569.87326: Loading InventoryModule 'host_list' from /Users/tru.
→˓..
88233 1512328569.87484: assigned :doc
88233 1512328569.87490: assigned :plainexamples
88233 1512328569.87513: Loading InventoryModule 'script' from /Users/trupp/.
→˓..
88233 1512328569.89141: assigned :doc
88233 1512328569.89160: Loaded config def from plugin (inventory/script)
88233 1512328569.89193: Loading InventoryModule 'yaml' from /Users/trupp/sr.
→˓..
88233 1512328569.89762: assigned :doc
88233 1512328569.89769: assigned :plainexamples
88233 1512328569.89780: Loaded config def from plugin (inventory/yaml)
88233 1512328569.89823: Loading InventoryModule 'ini' from /Users/trupp/src.
→˓..
88233 1512328569.90388: assigned :doc
88233 1512328569.90394: assigned :plainexamples
88233 1512328569.90425: Loading InventoryModule 'auto' from /Users/trupp/sr.
→˓..
88233 1512328569.90644: assigned :doc
88233 1512328569.90649: assigned :plainexamples
88233 1512328569.90696: Examining possible inventory source: /Users/trupp/s.
→˓..
88233 1512328569.90705: Attempting to use plugin host_list (/Users/trupp/sr.
→˓..
88233 1512328569.90713: /Users/trupp/src/f5-gsts-labs-ansible-cookbook/docs.
→˓..
88233 1512328569.90717: Attempting to use plugin script (/Users/trupp/src/e.
→˓..
88233 1512328569.90729: /Users/trupp/src/f5-gsts-labs-ansible-cookbook/docs.
→˓..
88233 1512328569.90734: Attempting to use plugin yaml (/Users/trupp/src/env.
→˓..
88233 1512328569.90804: Loading data from /Users/trupp/src/f5-gsts-labs-ans.
→˓..
88233 1512328569.90854: /Users/trupp/src/f5-gsts-labs-ansible-cookbook/docs.
→˓..
88233 1512328569.90860: Attempting to use plugin ini (/Users/trupp/src/envs.
→˓..
88233 1512328569.90993: set inventory_file for localhost
88233 1512328569.91004: set inventory_dir for localhost
88233 1512328569.91009: Added host localhost to inventory
88233 1512328569.91015: Added host localhost to group ungrouped
88233 1512328569.91020: Reconcile groups and hosts in inventory.

68

88233 1512328569.91025: Group all now contains localhost
88233 1512328569.91166: Loading CacheModule 'memory' from /Users/trupp/src/.
→˓..
88233 1512328569.93963: Loading data from /Users/trupp/src/f5-gsts-labs-ans.
→˓..
88233 1512328570.14469: Loading CallbackModule 'default' from /Users/trupp/.
→˓..
88233 1512328570.14924: assigned :doc
88233 1512328570.14989: Loading CallbackModule 'actionable' from /Users/tru.
→˓..
88233 1512328570.15173: assigned :doc
88233 1512328570.15194: Loading CallbackModule 'context_demo' from /Users/t.
→˓..
88233 1512328570.15406: assigned :doc
88233 1512328570.15427: Loading CallbackModule 'debug' from /Users/trupp/sr.
→˓..
88233 1512328570.15599: assigned :doc
88233 1512328570.15609: Loading CallbackModule 'default' from /Users/trupp/.
→˓..
88233 1512328570.15980: assigned :doc
88233 1512328570.16029: Loading CallbackModule 'dense' from /Users/trupp/sr.
→˓..
88233 1512328570.16451: assigned :doc
88233 1512328570.20526: Loading CallbackModule 'foreman' from /Users/trupp/.
→˓..
88233 1512328570.21163: assigned :doc
88233 1512328570.21185: Loaded config def from plugin (callback/foreman)
88233 1512328570.21223: Loading CallbackModule 'full_skip' from /Users/trup.
→˓..
88233 1512328570.21458: assigned :doc
88233 1512328570.22018: Loading CallbackModule 'hipchat' from /Users/trupp/.
→˓..
88233 1512328570.22699: assigned :doc
88233 1512328570.22725: Loaded config def from plugin (callback/hipchat)
88233 1512328570.22780: Loading CallbackModule 'jabber' from /Users/trupp/s.
→˓..
88233 1512328570.23387: assigned :doc
88233 1512328570.23440: Loaded config def from plugin (callback/jabber)
88233 1512328570.23524: Loading CallbackModule 'json' from /Users/trupp/src.
→˓..
88233 1512328570.23921: assigned :doc
88233 1512328570.24611: Loading CallbackModule 'junit' from /Users/trupp/sr.
→˓..
88233 1512328570.25312: assigned :doc
88233 1512328570.25339: Loaded config def from plugin (callback/junit)
88233 1512328570.25366: Loading CallbackModule 'log_plays' from /Users/trup.
→˓..
88233 1512328570.25624: assigned :doc
88233 1512328570.25681: Loading CallbackModule 'logentries' from /Users/tru.
→˓..
88233 1512328570.27404: assigned :doc
88233 1512328570.27414: assigned :plainexamples
88233 1512328570.27440: Loaded config def from plugin (callback/logentries)
88233 1512328570.27493: Loading CallbackModule 'logstash' from /Users/trupp.
→˓..
88233 1512328570.28007: assigned :doc
88233 1512328570.28025: Loaded config def from plugin (callback/logstash)
88233 1512328570.28143: Loading CallbackModule 'mail' from /Users/trupp/src.
→˓..

69

88233 1512328570.28534: assigned :doc
88233 1512328570.28553: Loaded config def from plugin (callback/mail)
88233 1512328570.28576: Loading CallbackModule 'minimal' from /Users/trupp/.
→˓..
88233 1512328570.28733: assigned :doc
88233 1512328570.28762: Loading CallbackModule 'null' from /Users/trupp/src.
→˓..
88233 1512328570.28914: assigned :doc
88233 1512328570.28943: Loading CallbackModule 'oneline' from /Users/trupp/.
→˓..
88233 1512328570.29117: assigned :doc
88233 1512328570.29147: Loading CallbackModule 'osx_say' from /Users/trupp/.
→˓..
88233 1512328570.29348: assigned :doc
88233 1512328570.29375: Loading CallbackModule 'profile_roles' from /Users/.
→˓..
88233 1512328570.29630: assigned :doc
88233 1512328570.29702: Loading CallbackModule 'profile_tasks' from /Users/.
→˓..
88233 1512328570.30465: assigned :doc
88233 1512328570.30476: assigned :plainexamples
88233 1512328570.30505: Loaded config def from plugin (callback/profile_
→˓tasks)
88233 1512328570.30542: Loading CallbackModule 'selective' from /Users/trup.
→˓..
88233 1512328570.31090: assigned :doc
88233 1512328570.31097: assigned :plainexamples
88233 1512328570.31118: Loaded config def from plugin (callback/selective)
88233 1512328570.31139: Loading CallbackModule 'skippy' from /Users/trupp/s.
→˓..
88233 1512328570.31305: assigned :doc
88233 1512328570.31328: Loading CallbackModule 'slack' from /Users/trupp/sr.
→˓..
88233 1512328570.32250: assigned :doc
88233 1512328570.32289: Loaded config def from plugin (callback/slack)
88233 1512328570.32337: Loading CallbackModule 'stderr' from /Users/trupp/s.
→˓..
88233 1512328570.32782: assigned :doc
88233 1512328570.33061: Loading CallbackModule 'syslog_json' from /Users/tr.
→˓..
88233 1512328570.34292: assigned :doc
88233 1512328570.34341: Loaded config def from plugin (callback/syslog_json)
88233 1512328570.34432: Loading CallbackModule 'timer' from /Users/trupp/sr.
→˓..
88233 1512328570.34699: assigned :doc
88233 1512328570.34755: Loading CallbackModule 'tree' from /Users/trupp/src.
→˓..
88233 1512328570.35199: assigned :doc
88233 1512328570.35319: Loading CallbackModule 'unixy' from /Users/trupp/sr.
→˓..
88233 1512328570.35797: assigned :doc
88233 1512328570.35953: Loading CallbackModule 'yaml' from /Users/trupp/src.
→˓..
88233 1512328570.36363: assigned :doc
88233 1512328570.36411: in VariableManager get_vars()
88233 1512328570.37284: Loading FilterModule 'core' from /Users/trupp/src/e.
→˓..
88233 1512328570.39222: Loading FilterModule 'ipaddr' from /Users/trupp/src.
→˓..

70

88233 1512328570.39913: Loading FilterModule 'json_query' from /Users/trupp.
→˓..
88233 1512328570.40022: Loading FilterModule 'mathstuff' from /Users/trupp/.
→˓..
88233 1512328570.40233: Loading FilterModule 'network' from /Users/trupp/sr.
→˓..
88233 1512328570.40287: Loading FilterModule 'urlsplit' from /Users/trupp/s.
→˓..
88233 1512328570.40499: Loading TestModule 'core' from /Users/trupp/src/env.
→˓..
88233 1512328570.40560: Loading TestModule 'files' from /Users/trupp/src/en.
→˓..
88233 1512328570.40642: Loading TestModule 'mathstuff' from /Users/trupp/sr.
→˓..
88233 1512328570.41209: done with get_vars()
88233 1512328570.41286: in VariableManager get_vars()
88233 1512328570.41373: Loading FilterModule 'core' from /Users/trupp/src/e.
→˓..
88233 1512328570.41384: Loading FilterModule 'ipaddr' from /Users/trupp/src.
→˓..
88233 1512328570.41394: Loading FilterModule 'json_query' from /Users/trupp.
→˓..
88233 1512328570.41402: Loading FilterModule 'mathstuff' from /Users/trupp/.
→˓..
88233 1512328570.41410: Loading FilterModule 'network' from /Users/trupp/sr.
→˓..
88233 1512328570.41418: Loading FilterModule 'urlsplit' from /Users/trupp/s.
→˓..
88233 1512328570.41479: Loading TestModule 'core' from /Users/trupp/src/env.
→˓..
88233 1512328570.41487: Loading TestModule 'files' from /Users/trupp/src/en.
→˓..
88233 1512328570.41500: Loading TestModule 'mathstuff' from /Users/trupp/sr.
→˓..
88233 1512328570.41917: done with get_vars()

PLAY [Labb 4.5] **
88233 1512328570.43407: Loading StrategyModule 'linear' from /Users/trupp/s.
→˓..
88233 1512328570.43460: getting the remaining hosts for this loop
88233 1512328570.43472: done getting the remaining hosts for this loop
88233 1512328570.43483: building list of next tasks for hosts
88233 1512328570.43491: getting the next task for host localhost
88233 1512328570.43504: done getting next task for host localhost
88233 1512328570.43514: ^ task is: TASK: Gathering Facts
88233 1512328570.43522: ^ state is: HOST STATE: block=0, task=0, rescue=0,.
→˓..
88233 1512328570.43529: done building task lists
88233 1512328570.43535: counting tasks in each state of execution
88233 1512328570.43541: done counting tasks in each state of execution:

num_setups: 1
num_tasks: 0
num_rescue: 0
num_always: 0

88233 1512328570.43545: advancing hosts in ITERATING_SETUP
88233 1512328570.43549: starting to advance hosts
88233 1512328570.43553: getting the next task for host localhost
88233 1512328570.43558: done getting next task for host localhost

71

88233 1512328570.43562: ^ task is: TASK: Gathering Facts
88233 1512328570.43566: ^ state is: HOST STATE: block=0, task=0, rescue=0,.
→˓..
88233 1512328570.43571: done advancing hosts to next task
88233 1512328570.43578: getting variables
88233 1512328570.43583: in VariableManager get_vars()
88233 1512328570.43621: Loading FilterModule 'core' from /Users/trupp/src/e.
→˓..
88233 1512328570.43630: Loading FilterModule 'ipaddr' from /Users/trupp/src.
→˓..
88233 1512328570.43641: Loading FilterModule 'json_query' from /Users/trupp.
→˓..
88233 1512328570.43650: Loading FilterModule 'mathstuff' from /Users/trupp/.
→˓..
88233 1512328570.43658: Loading FilterModule 'network' from /Users/trupp/sr.
→˓..
88233 1512328570.43667: Loading FilterModule 'urlsplit' from /Users/trupp/s.
→˓..
88233 1512328570.43696: Loading TestModule 'core' from /Users/trupp/src/env.
→˓..
88233 1512328570.43708: Loading TestModule 'files' from /Users/trupp/src/en.
→˓..
88233 1512328570.43716: Loading TestModule 'mathstuff' from /Users/trupp/sr.
→˓..
88233 1512328570.43867: Calling all_inventory to load vars for localhost
88233 1512328570.43888: Calling groups_inventory to load vars for localhost
88233 1512328570.43901: Calling all_plugins_inventory to load vars for
→˓localhost
88233 1512328570.44240: Loading VarsModule 'host_group_vars' from /Users/tr.
→˓..
88233 1512328570.44275: Calling all_plugins_play to load vars for localhost
88233 1512328570.44303: Loading VarsModule 'host_group_vars' from /Users/tr.
→˓..
88233 1512328570.44325: Calling groups_plugins_inventory to load vars for
→˓localhost
88233 1512328570.44354: Loading VarsModule 'host_group_vars' from /Users/tr.
→˓..
88233 1512328570.44383: Calling groups_plugins_play to load vars for
→˓localhost
88233 1512328570.46982: Loading VarsModule 'host_group_vars' from /Users/tr.
→˓..
88233 1512328570.47033: Loading VarsModule 'host_group_vars' from /Users/tr.
→˓..
88233 1512328570.47063: Loading VarsModule 'host_group_vars' from /Users/tr.
→˓..
88233 1512328570.47104: done with get_vars()
88233 1512328570.47132: done getting variables
88233 1512328570.47143: sending task start callback, copying the task so we.
→˓..
88233 1512328570.47154: done copying, going to template now
88233 1512328570.47164: done templating
88233 1512328570.47171: here goes the callback...

TASK [Gathering Facts] ***
88233 1512328570.47183: sending task start callback
88233 1512328570.47190: entering _queue_task() for localhost/setup
88233 1512328570.47339: worker is 1 (out of 1 available)
88233 1512328570.47410: exiting _queue_task() for localhost/setup

72

88233 1512328570.47435: done queuing things up, now waiting for results
→˓queue to drain
88233 1512328570.47451: waiting for pending results...
88247 1512328570.47777: running TaskExecutor() for localhost/TASK:
→˓Gathering Facts
88247 1512328570.47883: in run() - task 8c85904d-91d6-70e5-2197-000000000011
88247 1512328570.48303: calling self._execute()
88247 1512328570.49597: Loading Connection 'local' from /Users/trupp/src/
→˓env...
88247 1512328570.49687: Loading ShellModule 'csh' from /Users/trupp/src/
→˓envs...
88247 1512328570.49787: Loading ShellModule 'fish' from /Users/trupp/src/
→˓env...
88247 1512328570.49806: Loading ShellModule 'powershell' from /Users/trupp/
→˓s...
88247 1512328570.49822: Loading ShellModule 'sh' from /Users/trupp/src/envs/
→˓...
88247 1512328570.49917: Loading ShellModule 'sh' from /Users/trupp/src/envs/
→˓...
88247 1512328570.50658: assigned :doc
88247 1512328570.50814: Loading ActionModule 'normal' from /Users/trupp/src/
→˓...
88247 1512328570.50831: starting attempt loop
88247 1512328570.50838: running the handler
88247 1512328570.50930: ANSIBALLZ: Using lock for setup
88247 1512328570.50939: ANSIBALLZ: Acquiring lock
88247 1512328570.50950: ANSIBALLZ: Lock acquired: 4534992464
88247 1512328570.50962: ANSIBALLZ: Creating module
88247 1512328570.85142: ANSIBALLZ: Writing module
88247 1512328570.85214: ANSIBALLZ: Renaming module
88247 1512328570.85245: ANSIBALLZ: Done creating module
88247 1512328570.85407: _low_level_execute_command(): starting
88247 1512328570.85415: _low_level_execute_command(): executing: /bin/sh -c
→˓'echo ~ && sleep 0'
88247 1512328570.85429: in local.exec_command()
88247 1512328570.85435: opening command with Popen()
88247 1512328570.85823: done running command with Popen()
88247 1512328570.85842: getting output with communicate()
88247 1512328570.86905: done communicating
88247 1512328570.86927: done with local.exec_command()
88247 1512328570.86946: _low_level_execute_command() done: rc=0, stdout=/
→˓Users/trupp
, stderr=
88247 1512328570.86958: _low_level_execute_command(): starting
88247 1512328570.86967: _low_level_execute_command(): executing: /bin/sh -c
→˓'(...
88247 1512328570.86979: in local.exec_command()
88247 1512328570.86985: opening command with Popen()
88247 1512328570.87401: done running command with Popen()
88247 1512328570.87426: getting output with communicate()
88247 1512328570.89015: done communicating
88247 1512328570.89025: done with local.exec_command()
88247 1512328570.89042: _low_level_execute_command() done: rc=0,
→˓stdout=ansibl...
, stderr=
88247 1512328570.89055: transferring module to remote /Users/trupp/.ansible/
→˓tm...
88247 1512328570.89245: done transferring module to remote

73

88247 1512328570.89266: _low_level_execute_command(): starting
88247 1512328570.89273: _low_level_execute_command(): executing: /bin/sh -c
→˓'c...
88247 1512328570.89283: in local.exec_command()
88247 1512328570.89288: opening command with Popen()
88247 1512328570.89634: done running command with Popen()
88247 1512328570.89665: getting output with communicate()
88247 1512328570.91161: done communicating
88247 1512328570.91171: done with local.exec_command()
88247 1512328570.91192: _low_level_execute_command() done: rc=0, stdout=,
→˓stderr=
88247 1512328570.91200: _low_level_execute_command(): starting
88247 1512328570.91211: _low_level_execute_command(): executing: /bin/sh -c
→˓'...
88247 1512328570.91223: in local.exec_command()
88247 1512328570.91229: opening command with Popen()
88247 1512328570.91581: done running command with Popen()
88247 1512328570.91614: getting output with communicate()
88247 1512328571.28618: done communicating
88247 1512328571.28630: done with local.exec_command()
88247 1512328571.28655: _low_level_execute_command() done: rc=0, stdout=
{"invocation": {"module_args": {"filter": "*", "gather_subset": ["all"],
→˓"fact...
, stderr=
88247 1512328571.29273: done with _execute_module (setup, {'_ansible_version
→˓':...
88247 1512328571.29291: handler run complete
88247 1512328571.34550: attempt loop complete, returning result
88247 1512328571.34576: _execute() done
88247 1512328571.34583: dumping result to json
88247 1512328571.34671: done dumping result, returning
88247 1512328571.34683: done running TaskExecutor() for localhost/TASK:
→˓Gather...
88247 1512328571.34699: sending task result for task 8c85904d-91d6-70e5-
→˓2197-0...
88247 1512328571.34737: done sending task result for task 8c85904d-91d6-
→˓70e5-2...
88247 1512328571.35092: WORKER PROCESS EXITING
ok: [localhost]
88233 1512328571.36570: no more pending results, returning what we have
88233 1512328571.36579: results queue empty
88233 1512328571.36583: checking for any_errors_fatal
88233 1512328571.36588: done checking for any_errors_fatal
88233 1512328571.36592: checking for max_fail_percentage
88233 1512328571.36596: done checking for max_fail_percentage
88233 1512328571.36600: checking to see if all hosts have failed and the
→˓runn...
88233 1512328571.36604: done checking to see if all hosts have failed
88233 1512328571.36608: getting the remaining hosts for this loop
88233 1512328571.36616: done getting the remaining hosts for this loop
88233 1512328571.36626: building list of next tasks for hosts
88233 1512328571.36631: getting the next task for host localhost
88233 1512328571.36638: done getting next task for host localhost
88233 1512328571.36644: ^ task is: TASK: meta (flush_handlers)
88233 1512328571.37533: ^ state is: HOST STATE: block=1, task=1, rescue=0,
→˓alw...
88233 1512328571.37544: done building task lists
88233 1512328571.37549: counting tasks in each state of execution

74

88233 1512328571.37555: done counting tasks in each state of execution:
num_setups: 0
num_tasks: 1
num_rescue: 0
num_always: 0

88233 1512328571.37567: advancing hosts in ITERATING_TASKS
88233 1512328571.37572: starting to advance hosts
88233 1512328571.37576: getting the next task for host localhost
88233 1512328571.37583: done getting next task for host localhost
88233 1512328571.37589: ^ task is: TASK: meta (flush_handlers)
88233 1512328571.37594: ^ state is: HOST STATE: block=1, task=1, rescue=0,
→˓alwa...
88233 1512328571.37600: done advancing hosts to next task
88233 1512328571.37619: done queuing things up, now waiting for results
→˓queue to...
88233 1512328571.37626: results queue empty
88233 1512328571.37631: checking for any_errors_fatal
88233 1512328571.37636: done checking for any_errors_fatal
88233 1512328571.37641: checking for max_fail_percentage
88233 1512328571.37646: done checking for max_fail_percentage
88233 1512328571.37650: checking to see if all hosts have failed and the
→˓running result is not ok
88233 1512328571.37655: done checking to see if all hosts have failed
88233 1512328571.37660: getting the remaining hosts for this loop
88233 1512328571.37669: done getting the remaining hosts for this loop
88233 1512328571.37680: building list of next tasks for hosts
88233 1512328571.37686: getting the next task for host localhost
88233 1512328571.37698: done getting next task for host localhost
88233 1512328571.37705: ^ task is: TASK: Run a task
88233 1512328571.37710: ^ state is: HOST STATE: block=2, task=1, rescue=0,
→˓always=0,...
88233 1512328571.37715: done building task lists
88233 1512328571.37720: counting tasks in each state of execution
88233 1512328571.37725: done counting tasks in each state of execution:

num_setups: 0
num_tasks: 1
num_rescue: 0
num_always: 0

88233 1512328571.37732: advancing hosts in ITERATING_TASKS
88233 1512328571.37736: starting to advance hosts
88233 1512328571.37741: getting the next task for host localhost
88233 1512328571.37748: done getting next task for host localhost
88233 1512328571.37754: ^ task is: TASK: Run a task
88233 1512328571.37759: ^ state is: HOST STATE: block=2, task=1, rescue=0,
→˓always=0,...
88233 1512328571.37764: done advancing hosts to next task
88233 1512328571.37964: Loading ActionModule 'set_fact' from /Users/trupp/
→˓src/envs/f5...
88233 1512328571.37977: getting variables
88233 1512328571.37985: in VariableManager get_vars()
88233 1512328571.38064: Loading FilterModule 'core' from /Users/trupp/src/
→˓envs/f5ansi...
88233 1512328571.38074: Loading FilterModule 'ipaddr' from /Users/trupp/src/
→˓envs/f5an...
88233 1512328571.38082: Loading FilterModule 'json_query' from /Users/trupp/
→˓src/envs/...
88233 1512328571.38088: Loading FilterModule 'mathstuff' from /Users/trupp/
→˓src/envs/f...

75

88233 1512328571.38095: Loading FilterModule 'network' from /Users/trupp/
→˓src/envs/f5a...
88233 1512328571.38102: Loading FilterModule 'urlsplit' from /Users/trupp/
→˓src/envs/f5...
88233 1512328571.38135: Loading TestModule 'core' from /Users/trupp/src/
→˓envs/f5ansibl...
88233 1512328571.38142: Loading TestModule 'files' from /Users/trupp/src/
→˓envs/f5ansib...
88233 1512328571.38148: Loading TestModule 'mathstuff' from /Users/trupp/
→˓src/envs/f5a...
88233 1512328571.38235: Calling all_inventory to load vars for localhost
88233 1512328571.38246: Calling groups_inventory to load vars for localhost
88233 1512328571.38253: Calling all_plugins_inventory to load vars for
→˓localhost
88233 1512328571.38277: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/en...
88233 1512328571.38305: Calling all_plugins_play to load vars for localhost
88233 1512328571.38323: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/en...
88233 1512328571.38344: Calling groups_plugins_inventory to load vars for
→˓localhost
88233 1512328571.38365: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/en...
88233 1512328571.38386: Calling groups_plugins_play to load vars for
→˓localhost
88233 1512328571.38405: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/en...
88233 1512328571.38440: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/en...
88233 1512328571.38472: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/en...
88233 1512328571.39665: done with get_vars()
88233 1512328571.39684: done getting variables
88233 1512328571.39691: sending task start callback, copying the task so we
→˓can template
88233 1512328571.39696: done copying, going to template now
88233 1512328571.39702: done templating
88233 1512328571.39706: here goes the callback...

TASK [Run a task]
→˓***
88233 1512328571.39718: sending task start callback
88233 1512328571.39723: entering _queue_task() for localhost/set_fact
88233 1512328571.39728: Creating lock for set_fact
88233 1512328571.39884: worker is 1 (out of 1 available)
88233 1512328571.39947: exiting _queue_task() for localhost/set_fact
88233 1512328571.39969: done queuing things up, now waiting for results
→˓queue to drain
88233 1512328571.39976: waiting for pending results...
88286 1512328571.40364: running TaskExecutor() for localhost/TASK: Run a
→˓task
88286 1512328571.40509: in run() - task 8c85904d-91d6-70e5-2197-000000000008
88286 1512328571.40615: calling self._execute()
88286 1512328571.41878: Loading Connection 'local' from /Users/trupp/src/
→˓envs/f5ansible/...
88286 1512328571.41995: Loading ShellModule 'csh' from /Users/trupp/src/
→˓envs/f5ansible/l...
88286 1512328571.42067: Loading ShellModule 'fish' from /Users/trupp/src/
→˓envs/f5ansible/...

76

88286 1512328571.42078: Loading ShellModule 'powershell' from /Users/trupp/
→˓src/envs/f5an...
88286 1512328571.42086: Loading ShellModule 'sh' from /Users/trupp/src/envs/
→˓f5ansible/li...
88286 1512328571.42133: Loading ShellModule 'sh' from /Users/trupp/src/envs/
→˓f5ansible/li...
88286 1512328571.42792: assigned :doc
88286 1512328571.42850: Loading ActionModule 'set_fact' from /Users/trupp/
→˓src/envs/f5ans...
88286 1512328571.42863: starting attempt loop
88286 1512328571.42872: running the handler
88286 1512328571.42889: handler run complete
88286 1512328571.43127: attempt loop complete, returning result
88286 1512328571.43133: _execute() done
88286 1512328571.43137: dumping result to json
88286 1512328571.43142: done dumping result, returning
88286 1512328571.43148: done running TaskExecutor() for localhost/TASK: Run
→˓a task [8c85...
88286 1512328571.43160: sending task result for task 8c85904d-91d6-70e5-
→˓2197-000000000008
88286 1512328571.43188: done sending task result for task 8c85904d-91d6-
→˓70e5-2197-000000000008
88286 1512328571.43216: WORKER PROCESS EXITING
ok: [localhost]
88233 1512328571.43625: no more pending results, returning what we have
88233 1512328571.43638: results queue empty
88233 1512328571.43643: checking for any_errors_fatal
88233 1512328571.43650: done checking for any_errors_fatal
88233 1512328571.43655: checking for max_fail_percentage
88233 1512328571.43660: done checking for max_fail_percentage
88233 1512328571.43665: checking to see if all hosts have failed and the
→˓running result is not ok
88233 1512328571.43669: done checking to see if all hosts have failed
88233 1512328571.43674: getting the remaining hosts for this loop
88233 1512328571.43685: done getting the remaining hosts for this loop
88233 1512328571.43699: building list of next tasks for hosts
88233 1512328571.43706: getting the next task for host localhost
88233 1512328571.43717: done getting next task for host localhost
88233 1512328571.43724: ^ task is: TASK: Run a second task
88233 1512328571.43731: ^ state is: HOST STATE: block=2, task=2, rescue=0,
→˓always=0, ru...
88233 1512328571.43742: done building task lists
88233 1512328571.43747: counting tasks in each state of execution
88233 1512328571.43753: done counting tasks in each state of execution:

num_setups: 0
num_tasks: 1
num_rescue: 0
num_always: 0

88233 1512328571.43771: advancing hosts in ITERATING_TASKS
88233 1512328571.43776: starting to advance hosts
88233 1512328571.43781: getting the next task for host localhost
88233 1512328571.43788: done getting next task for host localhost
88233 1512328571.43794: ^ task is: TASK: Run a second task
88233 1512328571.43800: ^ state is: HOST STATE: block=2, task=2, rescue=0,
→˓always=0, ru...
88233 1512328571.43805: done advancing hosts to next task
88233 1512328571.44173: Loading ActionModule 'debug' from /Users/trupp/src/
→˓envs/f5ansibl...

77

88233 1512328571.44187: getting variables
88233 1512328571.44193: in VariableManager get_vars()
88233 1512328571.44265: Loading FilterModule 'core' from /Users/trupp/src/
→˓envs/f5ansible...
88233 1512328571.44279: Loading FilterModule 'ipaddr' from /Users/trupp/src/
→˓envs/f5ansib...
88233 1512328571.44288: Loading FilterModule 'json_query' from /Users/trupp/
→˓src/envs/f5a...
88233 1512328571.44297: Loading FilterModule 'mathstuff' from /Users/trupp/
→˓src/envs/f5an...
88233 1512328571.44305: Loading FilterModule 'network' from /Users/trupp/
→˓src/envs/f5ansi...
88233 1512328571.44313: Loading FilterModule 'urlsplit' from /Users/trupp/
→˓src/envs/f5ans...
88233 1512328571.44355: Loading TestModule 'core' from /Users/trupp/src/
→˓envs/f5ansible/l...
88233 1512328571.44364: Loading TestModule 'files' from /Users/trupp/src/
→˓envs/f5ansible/...
88233 1512328571.44371: Loading TestModule 'mathstuff' from /Users/trupp/
→˓src/envs/f5ansi...
88233 1512328571.44496: Calling all_inventory to load vars for localhost
88233 1512328571.44510: Calling groups_inventory to load vars for localhost
88233 1512328571.44519: Calling all_plugins_inventory to load vars for
→˓localhost
88233 1512328571.44550: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/envs/...
88233 1512328571.44577: Calling all_plugins_play to load vars for localhost
88233 1512328571.44596: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/envs/...
88233 1512328571.44618: Calling groups_plugins_inventory to load vars for
→˓localhost
88233 1512328571.44639: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/envs/...
88233 1512328571.44660: Calling groups_plugins_play to load vars for
→˓localhost
88233 1512328571.44679: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/envs/...
88233 1512328571.44716: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/envs/...
88233 1512328571.44748: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/envs/...
88233 1512328571.46020: done with get_vars()
88233 1512328571.46053: done getting variables
88233 1512328571.46063: sending task start callback, copying the task so we
→˓can template...
88233 1512328571.46068: done copying, going to template now
88233 1512328571.46075: done templating
88233 1512328571.46080: here goes the callback...

TASK [Run a second task]
→˓**
88233 1512328571.46094: sending task start callback
88233 1512328571.46101: entering _queue_task() for localhost/debug
88233 1512328571.46107: Creating lock for debug
88233 1512328571.46271: worker is 1 (out of 1 available)
88233 1512328571.46329: exiting _queue_task() for localhost/debug
88233 1512328571.46354: done queuing things up, now waiting for results
→˓queue to drain

78

88233 1512328571.46360: waiting for pending results...
88287 1512328571.46821: running TaskExecutor() for localhost/TASK: Run a
→˓second task
88287 1512328571.46936: in run() - task 8c85904d-91d6-70e5-2197-00000000000a
88287 1512328571.47046: calling self._execute()
88287 1512328571.47350: Loading FilterModule 'core' from /Users/trupp/src/
→˓envs/f5ansible...
88287 1512328571.47365: Loading FilterModule 'ipaddr' from /Users/trupp/src/
→˓envs/f5ansib...
88287 1512328571.47375: Loading FilterModule 'json_query' from /Users/trupp/
→˓src/envs/f5a...
88287 1512328571.47383: Loading FilterModule 'mathstuff' from /Users/trupp/
→˓src/envs/f5an...
88287 1512328571.47391: Loading FilterModule 'network' from /Users/trupp/
→˓src/envs/f5ansi...
88287 1512328571.47399: Loading FilterModule 'urlsplit' from /Users/trupp/
→˓src/envs/f5ans...
88287 1512328571.47735: Loading TestModule 'core' from /Users/trupp/src/
→˓envs/f5ansible/l...
88287 1512328571.47745: Loading TestModule 'files' from /Users/trupp/src/
→˓envs/f5ansible/...
88287 1512328571.47753: Loading TestModule 'mathstuff' from /Users/trupp/
→˓src/envs/f5ansi...
88287 1512328571.48550: when evaluation is False, skipping this task
88287 1512328571.48563: _execute() done
88287 1512328571.48571: dumping result to json
88287 1512328571.48580: done dumping result, returning
88287 1512328571.48588: done running TaskExecutor() for localhost/TASK: Run
→˓a second tas...
88287 1512328571.48607: sending task result for task 8c85904d-91d6-70e5-
→˓2197-00000000000a
88287 1512328571.48641: done sending task result for task 8c85904d-91d6-
→˓70e5-2197-00000000000a
88287 1512328571.48649: WORKER PROCESS EXITING
skipping: [localhost]
88233 1512328571.49095: no more pending results, returning what we have
88233 1512328571.49106: results queue empty
88233 1512328571.49111: checking for any_errors_fatal
88233 1512328571.49131: done checking for any_errors_fatal
88233 1512328571.49140: checking for max_fail_percentage
88233 1512328571.49146: done checking for max_fail_percentage
88233 1512328571.49151: checking to see if all hosts have failed and the
→˓running result is not ok
88233 1512328571.49157: done checking to see if all hosts have failed
88233 1512328571.49162: getting the remaining hosts for this loop
88233 1512328571.49190: done getting the remaining hosts for this loop
88233 1512328571.49200: building list of next tasks for hosts
88233 1512328571.49208: getting the next task for host localhost
88233 1512328571.49220: done getting next task for host localhost
88233 1512328571.49228: ^ task is: TASK: Run a third task
88233 1512328571.49239: ^ state is: HOST STATE: block=2, task=3, rescue=0,
→˓always=0, ru...
88233 1512328571.49249: done building task lists
88233 1512328571.49254: counting tasks in each state of execution
88233 1512328571.49260: done counting tasks in each state of execution:

num_setups: 0
num_tasks: 1
num_rescue: 0

79

num_always: 0
88233 1512328571.49273: advancing hosts in ITERATING_TASKS
88233 1512328571.49278: starting to advance hosts
88233 1512328571.49283: getting the next task for host localhost
88233 1512328571.49289: done getting next task for host localhost
88233 1512328571.49295: ^ task is: TASK: Run a third task
88233 1512328571.49302: ^ state is: HOST STATE: block=2, task=3, rescue=0,
→˓always=0, ru...
88233 1512328571.49308: done advancing hosts to next task
88233 1512328571.49899: Loading ActionModule 'debug' from /Users/trupp/src/
→˓envs/f5ansibl...
88233 1512328571.49921: getting variables
88233 1512328571.49930: in VariableManager get_vars()
88233 1512328571.50084: Loading FilterModule 'core' from /Users/trupp/src/
→˓envs/f5ansible...
88233 1512328571.50096: Loading FilterModule 'ipaddr' from /Users/trupp/src/
→˓envs/f5ansib...
88233 1512328571.50104: Loading FilterModule 'json_query' from /Users/trupp/
→˓src/envs/f5a...
88233 1512328571.50111: Loading FilterModule 'mathstuff' from /Users/trupp/
→˓src/envs/f5an...
88233 1512328571.50118: Loading FilterModule 'network' from /Users/trupp/
→˓src/envs/f5ansi...
88233 1512328571.50124: Loading FilterModule 'urlsplit' from /Users/trupp/
→˓src/envs/f5ans...
88233 1512328571.50166: Loading TestModule 'core' from /Users/trupp/src/
→˓envs/f5ansible/l...
88233 1512328571.50174: Loading TestModule 'files' from /Users/trupp/src/
→˓envs/f5ansible/...
88233 1512328571.50181: Loading TestModule 'mathstuff' from /Users/trupp/
→˓src/envs/f5ansi...
88233 1512328571.50273: Calling all_inventory to load vars for localhost
88233 1512328571.50283: Calling groups_inventory to load vars for localhost
88233 1512328571.50291: Calling all_plugins_inventory to load vars for
→˓localhost
88233 1512328571.50321: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/envs/...
88233 1512328571.50370: Calling all_plugins_play to load vars for localhost
88233 1512328571.50407: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/envs/...
88233 1512328571.50438: Calling groups_plugins_inventory to load vars for
→˓localhost
88233 1512328571.50469: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/envs/...
88233 1512328571.50494: Calling groups_plugins_play to load vars for
→˓localhost
88233 1512328571.50516: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/envs/...
88233 1512328571.50558: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/envs/...
88233 1512328571.50594: Loading VarsModule 'host_group_vars' from /Users/
→˓trupp/src/envs/...
88233 1512328571.51987: done with get_vars()
88233 1512328571.52010: done getting variables
88233 1512328571.52019: sending task start callback, copying the task so we
→˓can template...
88233 1512328571.52025: done copying, going to template now
88233 1512328571.52033: done templating

80

88233 1512328571.52047: here goes the callback...

TASK [Run a third task]
→˓***
88233 1512328571.52066: sending task start callback
88233 1512328571.52073: entering _queue_task() for localhost/debug
88233 1512328571.52246: worker is 1 (out of 1 available)
88233 1512328571.52320: exiting _queue_task() for localhost/debug
88233 1512328571.52345: done queuing things up, now waiting for results
→˓queue to drain
88233 1512328571.52351: waiting 88288 1512328571.52817: running
→˓TaskExecutor() for loca...
for pending results...
88288 1512328571.53010: in run() - task 8c85904d-91d6-70e5-2197-00000000000c
88288 1512328571.53117: calling self._execute()
88288 1512328571.53492: Loading FilterModule 'core' from /Users/trupp/src/
→˓envs/f5ansible...
88288 1512328571.53523: Loading FilterModule 'ipaddr' from /Users/trupp/src/
→˓envs/f5ansib...
88288 1512328571.53539: Loading FilterModule 'json_query' from /Users/trupp/
→˓src/envs/f5a...
88288 1512328571.53551: Loading FilterModule 'mathstuff' from /Users/trupp/
→˓src/envs/f5an...
88288 1512328571.53562: Loading FilterModule 'network' from /Users/trupp/
→˓src/envs/f5ansi...
88288 1512328571.53576: Loading FilterModule 'urlsplit' from /Users/trupp/
→˓src/envs/f5ans...
88288 1512328571.53665: Loading TestModule 'core' from /Users/trupp/src/
→˓envs/f5ansible/l...
88288 1512328571.53676: Loading TestModule 'files' from /Users/trupp/src/
→˓envs/f5ansible/...
88288 1512328571.53683: Loading TestModule 'mathstuff' from /Users/trupp/
→˓src/envs/f5ansi...
88288 1512328571.55223: Loading Connection 'local' from /Users/trupp/src/
→˓envs/f5ansible/...
88288 1512328571.55376: Loading ShellModule 'csh' from /Users/trupp/src/
→˓envs/f5ansible/l...
88288 1512328571.55476: Loading ShellModule 'fish' from /Users/trupp/src/
→˓envs/f5ansible/...
88288 1512328571.55497: Loading ShellModule 'powershell' from /Users/trupp/
→˓src/envs/f5an...
88288 1512328571.55509: Loading ShellModule 'sh' from /Users/trupp/src/envs/
→˓f5ansible/li...
88288 1512328571.55560: Loading ShellModule 'sh' from /Users/trupp/src/envs/
→˓f5ansible/li...
88288 1512328571.56124: assigned :doc
88288 1512328571.56194: Loading ActionModule 'debug' from /Users/trupp/src/
→˓envs/f5ansibl...
88288 1512328571.56211: starting attempt loop
88288 1512328571.56218: running the handler
88288 1512328571.56362: handler run complete
88288 1512328571.56372: attempt loop complete, returning result
88288 1512328571.56380: _execute() done
88288 1512328571.56385: dumping result to json
88288 1512328571.56392: done dumping result, returning
88288 1512328571.56405: done running TaskExecutor() for localhost/TASK: Run
→˓a third task...
88288 1512328571.56423: sending task result for task 8c85904d-91d6-70e5-
→˓2197-00000000000c

81

88288 1512328571.56471: done sending task result for task 8c85904d-91d6-
→˓70e5-2197-00000000000c
88288 1512328571.56505: WORKER PROCESS EXITING
ok: [localhost] => {

"fact1": "foo"
}
88233 1512328571.57041: no more pending results, returning what we have
88233 1512328571.57072: results queue empty
88233 1512328571.57086: checking for any_errors_fatal
88233 1512328571.57113: done checking for any_errors_fatal
88233 1512328571.57123: checking for max_fail_percentage
88233 1512328571.57132: done checking for max_fail_percentage
88233 1512328571.57138: checking to see if all hosts have failed and the
→˓running result is not ok
88233 1512328571.57149: done checking to see if all hosts have failed
88233 1512328571.57159: getting the remaining hosts for this loop
88233 1512328571.57201: done getting the remaining hosts for this loop
88233 1512328571.57223: building list of next tasks for hosts
88233 1512328571.57235: getting the next task for host localhost
88233 1512328571.57270: done getting next task for host localhost
88233 1512328571.57284: ^ task is: TASK: meta (flush_handlers)
88233 1512328571.57306: ^ state is: HOST STATE: block=3, task=1, rescue=0,
→˓always=0, ru...
88233 1512328571.57320: done building task lists
88233 1512328571.57326: counting tasks in each state of execution
88233 1512328571.57335: done counting tasks in each state of execution:

num_setups: 0
num_tasks: 1
num_rescue: 0
num_always: 0

88233 1512328571.57356: advancing hosts in ITERATING_TASKS
88233 1512328571.57372: starting to advance hosts
88233 1512328571.57378: getting the next task for host localhost
88233 1512328571.57389: done getting next task for host localhost
88233 1512328571.57396: ^ task is: TASK: meta (flush_handlers)
88233 1512328571.57402: ^ state is: HOST STATE: block=3, task=1, rescue=0,
→˓always=0, run...
88233 1512328571.57418: done advancing hosts to next task
88233 1512328571.57485: done queuing things up, now waiting for results
→˓queue to drain
88233 1512328571.57492: results queue empty
88233 1512328571.57497: checking for any_errors_fatal
88233 1512328571.57503: done checking for any_errors_fatal
88233 1512328571.57507: checking for max_fail_percentage
88233 1512328571.57512: done checking for max_fail_percentage
88233 1512328571.57517: checking to see if all hosts have failed and the
→˓running result is not ok
88233 1512328571.57521: done checking to see if all hosts have failed
88233 1512328571.57526: getting the remaining hosts for this loop
88233 1512328571.57532: done getting the remaining hosts for this loop
88233 1512328571.57540: building list of next tasks for hosts
88233 1512328571.57545: getting the next task for host localhost
88233 1512328571.57552: done getting next task for host localhost
88233 1512328571.57558: ^ task is: TASK: meta (flush_handlers)
88233 1512328571.57563: ^ state is: HOST STATE: block=4, task=1, rescue=0,
→˓always=0, run_st...
88233 1512328571.57569: done building task lists
88233 1512328571.57573: counting tasks in each state of execution

82

88233 1512328571.57578: done counting tasks in each state of execution:
num_setups: 0
num_tasks: 1
num_rescue: 0
num_always: 0

88233 1512328571.57584: advancing hosts in ITERATING_TASKS
88233 1512328571.57589: starting to advance hosts
88233 1512328571.57594: getting the next task for host localhost
88233 1512328571.57600: done getting next task for host localhost
88233 1512328571.57606: ^ task is: TASK: meta (flush_handlers)
88233 1512328571.57611: ^ state is: HOST STATE: block=4, task=1, rescue=0,
→˓always=0, run_st...
88233 1512328571.57616: done advancing hosts to next task
88233 1512328571.57626: done queuing things up, now waiting for results
→˓queue to drain
88233 1512328571.57632: results queue empty
88233 1512328571.57637: checking for any_errors_fatal
88233 1512328571.57642: done checking for any_errors_fatal
88233 1512328571.57646: checking for max_fail_percentage
88233 1512328571.57651: done checking for max_fail_percentage
88233 1512328571.57656: checking to see if all hosts have failed and the
→˓running result is not ok
88233 1512328571.57660: done checking to see if all hosts have failed
88233 1512328571.57665: getting the remaining hosts for this loop
88233 1512328571.57671: done getting the remaining hosts for this loop
88233 1512328571.57678: building list of next tasks for hosts
88233 1512328571.57683: getting the next task for host localhost
88233 1512328571.57689: done getting next task for host localhost
88233 1512328571.57694: ^ task is: None
88233 1512328571.57700: ^ state is: HOST STATE: block=5, task=0, rescue=0,
→˓always=0, run_st...
88233 1512328571.57705: done building task lists
88233 1512328571.57710: counting tasks in each state of execution
88233 1512328571.57714: done counting tasks in each state of execution:

num_setups: 0
num_tasks: 0
num_rescue: 0
num_always: 0

88233 1512328571.57720: all hosts are done, so returning None's for all
→˓hosts
88233 1512328571.57725: done queuing things up, now waiting for results
→˓queue to drain
88233 1512328571.57730: results queue empty
88233 1512328571.57735: checking for any_errors_fatal
88233 1512328571.57739: done checking for any_errors_fatal
88233 1512328571.57744: checking for max_fail_percentage
88233 1512328571.57749: done checking for max_fail_percentage
88233 1512328571.57753: checking to see if all hosts have failed and the
→˓running result is not ok
88233 1512328571.57758: done checking to see if all hosts have failed
88233 1512328571.57764: getting the next task for host localhost
88233 1512328571.57771: done getting next task for host localhost
88233 1512328571.57776: ^ task is: None
88233 1512328571.57781: ^ state is: HOST STATE: block=5, task=0, rescue=0,
→˓always=0, run_st...
88233 1512328571.57787: running handlers

PLAY RECAP
→˓**

83

localhost : ok=3 changed=0 unreachable=0 failed=0

Discussion

Debug output is not very useful unless you are debugging a core problem with Ansible. It is also useful, in
some cases, when you need to debug a module.

The reason we are showing it to you here is because it may be requested of you when you report problems
to the F5 Ansible developers.

Debug output shows the detailed execution of the Ansible engine as it processes the playbook and the
modules.

3.4.6 Dealing with “bigsuds/f5-sdk not found” errors

Problem

Your playbook is failing with an error about being “unable to find bigsuds/f5-sdk”, but you’re SURE they are
installed

Solution

There are three potential causes for this that we’ll cover. They are

• They’re not installed in the right spot

• You’re not using connection local

• You’re not using delegation

Wrong installation location

If you are using a virtualenv, or a system that does not have python found at /usr/bin/python, you must
set the python interpreter of that system for Ansible.

This might be /usr/bin/python3 or the path to the virtualenv python like
ansible_python_interpreter=/.virtualenvs/lab4.6/bin/python

See the discussion below for more information regarding this issue.

Not using connection local

You have not specified connection: local. Therefore, all remote hosts will be connected to over SSH.
Nine times out of ten the “not found” error is being raised because Ansible is connecting to a remote BIG-IP
and the F5 module dependencies are not installed on the BIG-IP

The F5 Ansible modules can not be installed on a BIG-IP

Use connection: local for the play, or, delegate_to: localhost for each BIG-IP task

84

Not using delegation

See the solution above as the reason and solution are the same, only this time you are missing
delegate_to: localhost instead of connection: local

Discussion

In an earlier lab we had, we learned that Ansible considers all your hosts to be remote. This includes when
you running it in a virtualenv or use connection: local.

This “wrong installation location” problem rears its head primarily when you run Ansible in a virtualenv.

As a general rule of thumb, don’t do that unless you know what you’re doing. If you’re reading this lab, you
probably don’t know what you’re doing.

To experience the error, we’ll use a contrived example with two virtualenvs; one with the dependencies
installed, one without. These labs can be found in the lab4.6 directory.

We have configured our hosts to reference two different python interpreters. The broken host, references
a python interpreter that is intended to mimic your non-virtualenv remote system (I know its referencing a
virtualenv, imagine with me here).

The working python interpreter is intended to mimic the virtualenv that you have installed Ansible in.

Change into the working virtualenv.

$ workon lab4.6

When you are in the virtualenv and the following shows f5-sdk,

(lab4.6) $ pip freeze | grep f5-sdk
f5-sdk==3.0.5
$

It is irrelevant. It is what is in the remote system’s python installation that matters because that is the
python that is invoked by default when Ansible connects to a machine.

Let’s run the lab4.6/playbooks/site.yaml playbook now

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

It seems the playbook fails (output truncated)

TASK [Create a pool]
→˓**
An exception occurred during task execution. To see the full traceback, use -
→˓vvv. The error was: ImportError: No module named netaddr
fatal: [broken]: FAILED! => {"changed": false, "module_stderr": "Traceback
→˓(most recent call last):\n File \"/tmp/ansible__3fdUX/ans

to retry, use: --limit @/root/f5-gsts-labs-ansible-cookbook/labs/
→˓lab4.6/playbooks/site.retry

To fix this, change the ansible_python_interpreter line in inventory/hosts file to read

• ansible_python_interpreter=/.virtualenvs/lab4.6/bin/python

Let’s re-run the playbook now

85

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Take a moment to review the images below for a better understanding of what Ansible is doing.

This is how Ansible normally works

In the virtualenv situation above, what we had instead, is that the Ansible client had the F5 SDK installed in
one virtualenv, but the remote host used a different virtualenv. Therefore, we had a similar situation as the
picture above, but using virtualenv instead

86

As you can see, we have the F5 SDK installed in the venv we were using, but not in the venv that the
remote host was configured for.

The same is implied when you are only using a single venv and the remote host specifies nothing. In that
case, you will need the dependencies installed in the system python.

87

3.4.7 Dealing with “authorization failed” errors

Problem

Your playbook is failing with an error about “F5 Authorization failed”

Solution

Either your password is wrong. But it isn’t! Yes. . . for the last time. . . it is.

Or,

Your remote authentication is configured (on BIG-IP) incorrectly.

Or,

The role of the user that you are using with the Ansible module is not Administrator or an equivalent.

Ensure that your password is correct. There is a specific command that you should ensure runs without
error, it is

$ curl -k -u admin:admin https://10.1.1.4/mgmt/tm/sys | jq .

Replace admin:admin with your user, and password combination. If the above command does not
succeed, then it will not be possible for the F5 Ansible module to succeed. On some other versions of
BIG-IP it was not possible for this to succeed.

A successful output will look like the following

In addition to incorrect passwords, ensure that your remote authentication is correct. You should see entries
in /var/log/secure.

Finally, the only supported role for the F5 Ansible modules is Administrator. No module is expected to
work without this role being assigned to them.

88

Discussion

Authentication can be a gnarly beast to debug because there are so many possible reasons it could not be
working.

By far, the two most common reasons are

• People are not providing the right password

• Remote authentication is misconfigured on BIG-IP

Understandably, people will often tell you that “of course my password is correct”. They will be wrong. 9
times out of 10, they will have either typed in the wrong password, or targeted the wrong BIG-IP (the BIG-IPs
having different passwords).

If this is not the case, then confirm that their remote authentication is configured correctly. BIG-IP will log
authentication successes to /var/log/secure. Therefore, if there are no entries in that file when a user
runs an Ansible playbook with a remote auth user, that could be a problem.

The final thing that is often missed (with remote authentication in particular) is the assignment of BIG-IP
roles to the remote-auth role. TACACS is notorious for this. Just because you have remote auth configured
does not necessarily mean that all is well. You must also ensure that the remote users are associated with
the local Administrator role.

Too often this is overlooked.

On later versions of BIG-IP, you can find the menu that needs to be configured in System > Users > Remote
Role Groups. See the image below.

89

If these are not configured properly, then you’ll be dead in the water. Figure your remote authentication out.

This is almost never an Ansible problem. 99.999% of the time it is a user problem.

3.4.8 Dealing with unsupported versions

Problem

You’re not sure what version of BIG-IP is supported

90

Solution

The list of supported versions, at the time of this writing, is

• BIG-IP 12.0.0 (BIGIP-12.0.0.0.0.606)

• BIG-IP 12.1.0 (BIGIP-12.1.0.0.0.1434)

• BIG-IP 12.1.0-hf1 (BIGIP-12.1.0.1.0.1447-HF1)

• BIG-IP 12.1.0-hf2 (BIGIP-12.1.0.2.0.1468-HF2)

• BIG-IP 12.1.1 (BIGIP-12.1.1.0.0.184)

• BIG-IP 12.1.1-hf1 (BIGIP-12.1.1.1.0.196-HF1)

• BIG-IP 12.1.1-hf2 (BIGIP-12.1.1.2.0.204-HF2)

• BIG-IP 12.1.2 (BIGIP-12.1.2.0.0.249)

• BIG-IP 12.1.2-hf1 (BIGIP-12.1.2.1.0.264-HF1)

• BIG-IP 13.0.0 (BIGIP-13.0.0.0.0.1645)

• BIG-IP 13.0.0-hf1 (BIGIP-13.0.0.1.0.1668-HF1)

• BIG-IP 13.0.0-hf2 (BIGIP-13.0.0.2.0.1671-HF2)

If you are using an unsupported version, no F5 Ansible modules are expected to work except
bigip_command. You must also use SSH to connect to the device (as REST will be unavailable on older
platforms).

To use this, set the parameter transport: cli and authenticate as root for it to work.

We have not written a deprecation policy for EOL’ing supported versions (in Ansible) of F5 products.

Discussion

At this time we have a large, and growing, list of F5 products that we have tested to work with Ansible.
Eventually, this list will be pruned.

In all cases, our recommendation is to plan your upgrade path. No exceptions.

On legacy product (versions less than 12) we do not expect any of our modules to work, so do not even
try. The only module that may work is the bigip_command module. However, on legacy versions, for it to
work correctly,

• you must use the transport: cli

• you must set the user argument to a name that has the Administrator role.

If you do not do the above things, do not expect that any of your tmsh commands will work. An example
usage would be

- name: Run multiple commands as root over CLI
bigip_command:

commands:
- tmsh create ltm virtual foo
- tmsh create ltm pool bar

server: lb.mydomain.com
password: secret
user: root
validate_certs: no

91

transport: cli
delegate_to: localhost

92

	BIG-IP Basics (optional)
	What is BIG-IP
	BIG-IP Basic Nomenclature
	F5 DevCentral BIG-IP Basics Articles
	Using F5 in Various Environments
	HA Proxy to BIG-IP Quick Start
	NGINX to BIG-IP Quick Start

	Getting Started
	Lab Topology

	Class - Ansible Cookbook
	Module – Installation and configuration of Ansible
	Module – Basic BIG-IP administration with Ansible
	Module – Slightly more advanced Ansible usage
	Module – Debugging Ansible problems

