

F5 GSTS Ansible Cookbook Labs - Index

Welcome

Welcome to the Ansible Cookbook lab at F5 GSTS 2018

The content contained here leverages a full DevOps CI/CD
pipeline and is sourced from the GitHub repository at https://github.com/f5devcentral/f5-gsts-labs-ansible-cookbook.
Bugs and Requests for enhancements can be made using by
opening an Issue within the repository.

Contents:

	BIG-IP Basics (optional)
	What is BIG-IP

	BIG-IP Basic Nomenclature

	F5 DevCentral BIG-IP Basics Articles

	Using F5 in Various Environments

	HA Proxy to BIG-IP Quick Start

	NGINX to BIG-IP Quick Start

	Getting Started
	Lab Topology

	Class - Ansible Cookbook
	1. Module – Installation and configuration of Ansible

	2. Module – Basic BIG-IP administration with Ansible

	3. Module – Slightly more advanced Ansible usage

	4. Module – Debugging Ansible problems

BIG-IP Basics (optional)

Just in case you’re new to the F5 BIG-IP platform (or need a refresher) we’ve
included some links and videos below that will help get you started.

What is BIG-IP

 Getting Started

Getting Started

Note

All work for this lab will be performed exclusively from the Ansible
controller. No installation or interaction with your local system is
required.

Lab Topology

The following components have been included in your lab environment:

	1 x F5 BIG-IP VE (v13.0)

	1 x Linux Server (ubuntu 16.04 LTS)

	1 x Linux Client (ubuntu 16.04 LTS)

	1 x Ansible Controller (ubuntu 16.04 LTS)

Lab Components

The following table lists VLANS, IP Addresses and Credentials for all
components:

	Component

	VLAN/IP Address(es)

	Credentials

	big-ip01

	
	Management: 10.1.1.4

	External: 10.1.10.10

	Internal: 10.1.20.10

	admin/admin

	client

	
	Management: 10.1.1.5

	External: 10.1.10.11

	root/default

	server

	
	Management: 10.1.1.6

	Internal: 10.1.20.11

	root/default

	controller

	
	Management: 10.1.1.7

	root/default

Lab Environments

In order to complete this class you will need to utilize a specific
Lab Environment. You can consume this training in the following
ways:

	Pre-built Environment using the F5 Unified Demo Framework (UDF)

	This environment is currently available for F5 employees only

Select the Environment from the list below to get started:

	F5 Unified Demo Framework (UDF)

 F5 Unified Demo Framework (UDF)

F5 Unified Demo Framework (UDF)

Note

This environment is currently available for F5 employees only

Determine how to start your deployment:

	Official Events (ISC, SSE Summits): Please follow the
instructions given by your instructor to join the UDF Course.

	Self-Paced/On Your Own: Login to UDF,
Deploy the Ansible Cookbook
Blueprint and Start it.

Connecting to the Environment

To connect to the lab environment we will use a Web Shell to connect to the
Ansible Controller.

Connect using Web Shell

	In the UDF navigate to your Deployments

	Click the Details button for your Deployment

	Click the Components tab

	Find the Ansible Controller Component and click the the Access
button. Then click the WEB SHELL option. A new browser window/tab
will be opened.

	Ensure that the f5-gsts-labs-ansible-cookbook directory in your /root directory
is up-to-date.

This can be done with the following command

cd /root/f5-gsts-labs-ansible-cookbook && git pull

	Select how you would like to continue:

	Review: BIG-IP Basics (optional)

	Start: Module – Installation and configuration of Ansible

 Class - Ansible Cookbook

Class - Ansible Cookbook

This class covers the following topics:

	Installation and configuration of Ansible

	Basic BIG-IP administration with Ansible

	Slightly more advanced Ansible usage

	Debugging Ansible problems

These topics are arranged as a series of recipes, in much the same
way as the O’Reilly Cookbook series.

Expected time to complete: 2 hours

	1. Module – Installation and configuration of Ansible

	2. Module – Basic BIG-IP administration with Ansible

	3. Module – Slightly more advanced Ansible usage

	4. Module – Debugging Ansible problems

 1. Module – Installation and configuration of Ansible

1. Module – Installation and configuration of Ansible

The first step in using Ansible with an F5 product is to ensure that you
have done the absolute minimum required to make Ansible work.

The recipes in this chapter look at methods for installing and configuring
Ansible. We cover things such as installing the tool, establishing the
correct directory layouts, and creating necessary files.

We will focus on using Ansible 2.5 for this class. This specific version
of Ansible, at the time of this writing, is not officially released. This
will not be a problem for us, and will also serve to prepare you for what
is coming in the future.

	1.1. Installing Ansible

	1.2. Installing module dependencies

	1.3. Expected File Layout

	1.4. Installing unstable modules

	1.5. Tweaking local ansible.cfg

	1.6. Using static inventory

	1.7. Installing software with apt

	1.8. Writing general files to a remote device

	1.9. Templating a file to a remote device

 1.1. Installing Ansible

1.1. Installing Ansible

Problem

You need to install Ansible in an existing Linux environment

Solution

Ansible is distributed in several ways. These include

	Via the system’s package manager

	Via the PyPI (pronounced “pie pee eye”) package repository

	Via source tarball

The only proper way to install Ansible is via PyPI using the pip command line tool.

pip install ansible

For the remainder of these labs we will be using the development copy of Ansible.

Since this is not yet available, we’ll install it directly from Github

$ pip install --upgrade git+https://github.com/ansible/ansible.git

This will include an updated set of modules that will be released in March.

Discussion

PyPI is considered the only correct way to install Ansible because it
is the only method that the Ansible developers themselves can control.

The packages that you find on Linux distributions such as Ubuntu, Fedora,
or CentOS are maintained by members of the Ansible community and not by
Ansible itself.

Additionally, the packages that ship with your operating system are
frequently out-of-date.

True, they may be current at the time of their release, but Ansible’s
release cycle is quarterly, and therefore they can become out of date
quickly.

The pip method of installing is not constrained to the demands of the
Linux maintainers; it exists outside of their control. Therefore, it is
the easiest way to get the most up-to-date software from Ansible.

One more concern with the Linux packages is that they typically place
files in a location different from where pip places them. This is
totally expected, but it can have frustrating consequences should you
choose to switch to the pip version (for example, to upgrade to a
more recent version).

The differences in file locations can conflict with each other and leave
your Ansible installation a complete mess. Best to just stick with pip.

 1.2. Installing module dependencies

1.2. Installing module dependencies

Problem

You need to install F5 Ansible module dependencies

Solution

Each module has different requirements. The F5 Ansible modules
require the following PyPI packages

	f5-sdk

	bigsuds

	netaddr

	objectpath

	isoparser

	lxml

	deepdiff

These can be installed with the pip command

pip install f5-sdk bigsuds netaddr objectpath isoparser lxml deepdiff

Discussion

Unfortunately, there is no way to install all dependencies for
all modules out of the box.

Instead, you must find the dependencies for the module you are
interested in, and install them manually. This can be done by either,

	Using the ansible-doc command

	By visiting the Ansible documentation page for the module.

Take bigip_selfip for example.

ansible-doc command

The ansible-doc command to view the requirements is,

ansible-doc bigip_selfip

The requirements are shown in the output of this command.

[image: image2]

You may need to scroll to find this information.

Visiting documentation page

Alternatively you can visit the docs for this module by navigating
to this link [http://docs.ansible.com/ansible/latest/bigip_selfip_module.html]

There is a direct link to the requirements list if you mouse over the
Requirements header

[image: image1]

Note the chain icon to the right of the header. That link will
lead you here [http://docs.ansible.com/ansible/latest/bigip_selfip_module.html#requirements-on-host-that-executes-module].

Installing a development copy of F5 SDK

One behavior that is frequently done is the installation of a
development copy of the F5 Python SDK. This is usually safe to
do as the SDK is always in-line with the Ansible modules.

To do this, run the following command:

pip install --upgrade git+https://github.com/F5Networks/f5-common-python.git

This is usually a required step for Ansible upgrades and future
releases of Ansible because we often include new APIs in the SDK
that Ansible will make use of.

 1.3. Expected File Layout

1.3. Expected File Layout

Problem

You need to know how you should arrange files on disk so that Ansible can find them

Solution

You should create the following directory structure when using Ansible.

.
├── ansible.cfg
├── inventory
│ ├── group_vars
│ │ └── all.yaml
│ ├── host_vars
│ │ └── host1.yaml
│ └── hosts
├── library
├── playbooks
│ └── site.yaml
├── files
├── roles
├── scripts
└── templates

The above assumes the following,

	you have a single host named host1

	you have a single playbook named site.yaml

More should be added as necessary. Empty directories are not required.

Discussion

Each directory in Ansible has a specific purpose. You may not use all
of these directories in your day-to-day work, and that’s fine. You can
remove empty directories as needed.

In its simplest format, Ansible requires only two files to work; an
inventory and a playbook. As indicated in the solution above, we do
not recommend you follow that design.

Until you have sufficient knowledge of how Ansible’s parts work, it is
better that you use the solution above so that any modules you may use
(in any place you use them) will work.

Directories that are optional are,

	files

	library

	roles

	scripts

	templates

The purpose of each directory is the following,

	files

	contains non-templates files to be used by the copy module

	library

	contains third-party Ansible modules that you want to use in your playbook

	roles

	contains roles that you want to use in your playbook

	scripts

	contains shell scripts that will be referenced by the script module

	templates

	contains files that will be treated as templates and referenced by the

template module.

 1.4. Installing unstable modules

1.4. Installing unstable modules

Problem

You need to install an unstable F5 Ansible module

Solution

The procedure for this is documented here [http://clouddocs.f5.com/products/orchestration/ansible/devel/usage/installing-modules.html]. We will use bigip_software
for this example.

Ensure that you have created a directory named library as shown in
1.3 Expected File Layout.

Next, download the source for this module using curl

curl -o library/bigip_software.py https://raw.githubusercontent.com/F5Networks/f5-ansible/devel/library/bigip_software.py

You can now use the module as documented in its examples.

Discussion

Our unstable code exists for the following reasons,

	We do not want to upstream everything. This may be because the underlying
product is immature or not fully supported

	Due to the above, we can’t put it into upstream Ansible. If we did, this would
create a support liability for us.

	It allows us to work independently of anything Ansible does.

Will you need to get unstable code? Probably.

In many cases, the unstable code is just as good as what exists in Ansible today,
but you won’t know this unless you try to use it.

If you find a module in the unstable branch that is not in the stable
(Ansible upstream) product, you will want to let us know about this by
filing an issue.

 1.5. Tweaking local ansible.cfg

1.5. Tweaking local ansible.cfg

Problem

You need to tell Ansible how to find your unreleased modules

Solution

Create, or change, an ansible.cfg file that specifies the library setting.

I recommend that you put an ansible.cfg file at the top level of
your Ansible related work.

Then add the following line to the ansible.cfg file

library = ./library

Discussion

There are a number of settings that you can change in an ansible.cfg file.
The entire list is shown here [http://docs.ansible.com/ansible/latest/intro_configuration.html].

Amongst the list of things that I routinely change, are the following

	retry_files_enabled = False

	host_key_checking = False

	roles_path = ./roles

	library = ./library

Values for paths (such as roles_path and library can be separated by
a colon. For example,

roles_path = ./roles-dir-1:/path/to/absolute-dir2

I never use the system config found at /etc/ansible/ansible.cfg. This
is an anti-pattern, do not do it. Instead, put your changes for you specific
project in a config file found in your project’s top-level directory.

If you use the system file, it will affect all the users of the system and all
the uses of Ansible on the system. This is almost never what you want.

 1.6. Using static inventory

1.6. Using static inventory

Problem

You need to have Ansible communicate with a predefined list of hosts

Solution

Use a static inventory file.

A static inventory file is a INI formatted file. Here is an example

server ansible_host=10.1.1.6
bigip ansible_host=10.1.1.4
client ansible_host=10.1.1.5

The above text you be put in a file named hosts in the inventory directory.

You would use the inventory like so,

ansible-playbook -i inventory/hosts playbooks/site.yaml

	Create a lab1.6 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a server host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.6

	Add a client host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.5

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

Discussion

Static hosts are the original means of specifying an inventory to Ansible.

The format mentioned in the solution above includes the following information,

	A host named bigip. This value will be put in Ansible’s inventory_hostname
variable.

	A host fact called ansible_host. This is a reserved variable in Ansible.
It is used by Ansible to connect to the remote host. Its value is 10.1.1.4.

There are many more forms of inventory than static lists. Indeed, you can also
provide dynamic lists that take the form of small programs which output specially
formatted JSON.

Static lists work well for demos, ad-hoc play running, and cases when your
organizations systems practically never change. Otherwise, a dynamic source is
probably better.

Dynamic sources must be written by hand if you require a specific means of
getting the host informations (for example, from a local database at your company).

There are also a number of dynamic resources that you can get from Ansible.
You can find Community contributions here [https://github.com/ansible/ansible/tree/devel/contrib/inventory], and you can find Contributions that ship with Ansible, here [https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/inventory].

 1.7. Installing software with apt

1.7. Installing software with apt

Problem

You need to install apache using the on an Ubuntu host

Solution

Use the apt module.

	Create a lab1.7 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Change the playbooks/site.yaml file to resemble the following.

	Add a server host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.6

- name: An example install playbook
 hosts: server

 tasks:
 - name: Install apache
 apt:
 name: apache2
 update_cache: yes

Run this playbook, from the lab1.7 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

There are different package managers for the different distributions of
Linux that exist.

In this case, we are using the apt package manager because we are on a
Debian/Ubuntu based system. On systems such as Fedora or CentOS we would
use the yum, or dnf, module to install similar packages.

Be aware that the name of a package will change depending on the package
manager being used.

 1.8. Writing general files to a remote device

1.8. Writing general files to a remote device

Problem

You need to write the contents of a file (literal) to a remote location

Solution

Use the copy module.

	Create a lab1.8 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Change the playbooks/site.yaml file to resemble the following.

	Add a server host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.6

- name: An example copy playbook
 hosts: server

 tasks:
 - name: Copy a local file to the remote system
 copy:
 src: ../files/sample-download.txt
 dest: /var/www/html/sample-download.txt

This playbooks requires a file named sample-download.txt be created in the files directory
of your lab. Therefore, create this file. You can put in it any text you want. How about,

This was uploaded by Ansible

Run this playbook, from the lab1.8 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

This module will take a given file, and put it on a remote system at the
destination that you specify.

This module is idempotent. That means that if the remote file exists, it
will not overwrite it upon subsequent runs of the playbook.

This module, like all of the standard Ansible modules, works over SSH.
Therefore, the accounts used will be those implicitly used by Ansible
unless you specify otherwise.

Ansible will SSH as the user running the playbook (by default) and use
the SSH public key for that user (by default).

Default Ansible modules (those that use SSH) will work on BIG-IP versions
>= 12.0.0. They require though that your SSH user be configured to use the
“advanced” shell. They will not work using the tmsh shell.

 1.9. Templating a file to a remote device

1.9. Templating a file to a remote device

Problem

You need to write the contents of a file (containing variables) to a remote location

Solution

Use the template module.

	Create a lab1.9 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Change the playbooks/site.yaml file to resemble the following.

	Add a server host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.6

- name: An example template playbook
 hosts: server

 tasks:
 - name: Template a file to disk
 template:
 src: ../templates/sample-template.txt
 dest: /tmp/sample-template.txt

This playbooks requires a file named sample-template.txt be created in the templates
directory of your lab. Therefore, create this file. You can put in it any text you want. How
about,

This was uploaded by Ansible. The remote machine info is,
name: {{ inventory_hostname }}
ip: {{ ansible_host }}

Run this playbook, from the lab1.9 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

This module will take a given file, and put it on a remote system at the
destination that you specify.

This module is idempotent. That means that if the remote file exists, it
will not overwrite it upon subsequent runs of the playbook.

This module, like all of the standard Ansible modules, works over SSH.
Therefore, the accounts used will be those implicitly used by Ansible
unless you specify otherwise.

Ansible will SSH as the user running the playbook (by default) and use the
SSH public key for that user (by default).

Default Ansible modules (those that use SSH) will work on BIG-IP versions
>= 12.0.0. They require though that your SSH user be configured to use the
“advanced” shell. They will not work using the tmsh shell.

 2. Module – Basic BIG-IP administration with Ansible

2. Module – Basic BIG-IP administration with Ansible

Once you have installed and configured Ansible, you will want to
move on to doing basic administrative tasks on the BIG-IP.

The following recipes target a common subset of work that people
typically undertake when configuring BIG-IP devices. Among the
various recipes included in this chapter are means to create pools
and virtual servers, provision modules, and manage users and partitions.

We will also see recipes for modules that are used in nearly every playbook.

	2.1. Creating a pool on BIG-IP

	2.2. Writing once, re-using many times

	2.3. Creating a physical node

	2.4. Adding nodes to a pool

	2.5. Creating a virtual server on BIG-IP

	2.6. Installing an iApp template on BIG-IP

	2.7. Creating an HTTP service from the HTTP iApp

	2.8. Provisioning ASM

	2.9. Applying an ASM policy

	2.10. Creating an LTM policy with rules

	2.11. Creating a new partition

	2.12. Saving your configuration

	2.13. Waiting for your device to (re)boot

	2.14. Changing the root password

 2.1. Creating a pool on BIG-IP

2.1. Creating a pool on BIG-IP

Problem

You need to create a pool on a BIG-IP

Solution

Use the bigip_pool module.

	Create a lab2.1 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example pool playbook
 hosts: bigip
 connection: local

 tasks:
 - name: Create web servers pool
 bigip_pool:
 name: web-servers
 lb_method: ratio-member
 password: admin
 server: 10.1.1.4
 user: admin
 validate_certs: no

Run this playbook, from the lab2.1 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_pool module can configure a number of attributes for a pool.
At a minimum, the name is required.

This module is idempotent. Therefore, you can run it over and over again and
so-long as no settings have been changed, this module will report no changes.

Notice how we also included the credentials to log into the device as arguments
to the task. This is not the preferred way to do this, but it illustrates a
way for beginners to get started without needing to know a less obvious way to
specify these values.

The module has several more options, all of which can be seen at this link [http://docs.ansible.com/ansible/latest/bigip_pool_module.html].
I have reproduced them below. These are relevant to the 2.5 release of Ansible.

	description

	lb_method

	monitor_type

	monitors

	name

	quorum

	reselect_tries

	service_down_action

	slow_ramp_time

 2.2. Writing once, re-using many times

2.2. Writing once, re-using many times

Problem

You want to specify the values for user/pass and validate_certs only once
but re-use them throughout your tasks

Solution

Use variables.

	Create a lab2.2 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example copy playbook
 hosts: bigip

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Create many pools
 bigip_pool:
 name: web-servers
 lb_method: ratio-member
 password: "{{ password }}"
 server: 10.1.1.4
 user: "{{ username }}"
 validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab2.2 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

Variables are one of the ways in which you can set a value once and re-use it
across many tasks in your Play.

It should be noted that variables do not survive across Plays. Therefore,
if you need to use them in multiple plays, it is better to put them in a
host_vars or group_vars file.

Variables are identified by their double curly braces ({{ and }}). The value
in-between these braces is the variable name.

Notice how we set our variables at the top of the play in the vars section.
This is a special section of the Playbook where you can specify variable data
that will be used across this Play and this Play only.

When using variables, they must be wrapped in double quotes. You can see this
in the bigip_pool task for the password, user, and validate_certs
arguments.

 2.3. Creating a physical node

2.3. Creating a physical node

Problem

You need to create a node which you will assign to a pool.

Solution

Use the bigip_node module.

	Create a lab2.3 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example virtual server playbook
 hosts: bigip
 connection: local

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Create node for physical machine
 bigip_node:
 address: 10.1.20.11
 name: server
 password: "{{ password }}"
 server: 10.1.1.4
 user: "{{ username }}"
 validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab2.3 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_node module can configure physical device addresses that can
later be added to pools. At a minimum, the name is required. Additionally,
either the address or fqdn parameters are also required when creating
new nodes.

This module can take hostnames using the fqdn parameter. You may not specify
both the address and fqdn.

 2.4. Adding nodes to a pool

2.4. Adding nodes to a pool

Problem

You need to assign newly created nodes to a pool

Solution

Use the bigip_pool_member module.

	Create a lab2.4 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example pool members playbook
 hosts: bigip
 connection: local

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Add nodes to pool
 bigip_pool_member:
 description: webserver-1
 host: 10.1.20.11
 name: server
 password: "{{ password }}"
 pool: web-servers
 port: 80
 server: 10.1.1.4
 user: "{{ username }}"
 validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab2.4 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_pool_member module can configure pools with the details of
existing nodes. A node that has been placed in a pool is referred to as
a “pool member”.

At a minimum, the name is required. Additionally, the host is required
when creating new pool members.

 2.5. Creating a virtual server on BIG-IP

2.5. Creating a virtual server on BIG-IP

Problem

You need to create a virtual server, associated with a pool, on a BIG-IP

Solution

Use the bigip_virtual_server module.

	Create a lab2.5 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example virtual server playbook
 hosts: bigip
 connection: local

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Create web server VIP
 bigip_virtual_server:
 description: webserver-vip
 destination: 10.1.1.100
 password: "{{ password }}"
 name: vip-1
 pool: web-servers
 port: 80
 server: 10.1.1.4
 snat: Automap
 user: "{{ username }}"
 profiles:
 - http
 - clientssl
 validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab2.5 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_virtual_server module can configure a number of attributes for a
virtual server. At a minimum, the name is required.

This module is idempotent. Therefore, you can run it over and over again
and so-long as no settings have been changed, this module will report no
changes.

Several arguments, such as policies and profiles take a list of values.
If you update this list of values, it will be reflected on the virtual
server’s configuration. This includes removing items from these lists.

As an example, if you have four items in the profile list, and then you
remove one, this will cause the virtual server to be reconfigured to only
have three profiles.

 2.6. Installing an iApp template on BIG-IP

2.6. Installing an iApp template on BIG-IP

Problem

You need to install an App Services Integration iApp

Solution

Use the bigip_iapp_template module.

	Change into the lab2.6 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example iApp template playbook
 hosts: bigip
 connection: local

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Add the iApp
 bigip_iapp_template:
 content: "{{ lookup('file', 'appsvcs_integration_v2.0.004.tmpl') }}"
 password: "{{ password }}"
 server: 10.1.1.4
 state: present
 user: admin

Run this playbook, from the lab2.6 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_iapp_template module can manage the TCL iApps that are
installed on the remote BIG-IP.

Most arguments to the module are unnecessary because the module will
attempt to parse the iApp itself to determine the necessary values.

Nevertheless, if you do provide the values, they will override what
is in content of the iApp itself.

 2.7. Creating an HTTP service from the HTTP iApp

2.7. Creating an HTTP service from the HTTP iApp

Problem

You need to create a service from the HTTP iApp

Solution

Use the bigip_iapp_service module.

	Change to lab2.7 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example iApp service playbook
 hosts: bigip
 connection: local

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Add the iApp template
 bigip_iapp_template:
 content: "{{ lookup('file', '../files/f5.http.v1.2.0rc4.tmpl') }}"
 password: "{{ password }}"
 server: 10.1.1.4
 state: present
 user: admin

 - name: Add the iApp Service
 bigip_iapp_service:
 name: http-iapp1
 template: f5.http.v1.2.0rc4
 password: "{{ password }}"
 server: 10.1.1.4
 validate_certs: "{{ validate_certs }}"
 state: present
 user: "{{ username }}"
 parameters:
 lists:
 - name: irules__irules
 value:
 tables:
 - name: basic__snatpool_members
 - name: net__snatpool_members
 - name: optimizations__hosts
 - name: pool__hosts
 columnNames:
 - name
 rows:
 - row:
 - internal.company.bar
 - name: pool__members
 columnNames:
 - addr
 - port
 - connection_limit
 rows:
 - row:
 - ""
 - 80
 - 0
 - name: server_pools__servers
 variables:
 - name: var__vs_address
 value: 1.1.1.1
 - name: pm__apache_servers_for_http
 value: 2.2.2.1:80
 - name: pm__apache_servers_for_https
 value: 2.2.2.2:80
 - name: client__http_compression
 value: "/#create_new#"
 - name: monitor__monitor
 value: "/#create_new#"
 - name: monitor__uri
 value: "/"
 - name: net__client_mode
 value: wan
 - name: net__server_mode
 value: lan
 - name: pool__addr
 value: 10.10.10.10
 - name: pool__pool_to_use
 value: "/#create_new#"
 - name: pool__port
 value: 80
 - name: ssl__mode
 value: no_ssl
 - name: ssl_encryption_questions__advanced
 value: no
 - name: ssl_encryption_questions__help
 value: hide

Run this playbook, from the lab2.7 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_iapp_service module can manage the iApp services that are
on the remote BIG-IP.

The easiest way to provide data to this module is in the form of a content
lookup, providing the path to a file containing the parameters argument.

To use that approach would require a JSON file and a specific format of Task in
your Playbook. An example is below.

- name: Add the iApp
 bigip_iapp_service:
 name: http-iapp2
 template: f5.http
 password: "{{ password }}"
 server: 10.1.1.4
 validate_certs: "{{ validate_certs }}"
 state: present
 user: "{{ username }}"
 parameters: "{{ lookup('file', '../files/http-iapp-parameters.json') }}"

Observe how we changed the parameters to use a lookup instead of providing the
YAML format.

The syntax for a lookup is similar to normal Ansible variables, in that it is wrapped
in {{ and }}. It differs though in its use a the following command.

	lookup('file', '/path/to/file')

You can read this in the same way you might read a function in a programming language.

The lookup word is the same of a method that Ansible makes available to you. Next,
is the word file wraped in quotes. This is a type of lookup. There are many types
of lookups that you can use. Finally is the path on the filesystem that you want to look
up. That is in the /path/to/file/ value; also wrapped in quotes.

The parentheses (and) are also important, and required, in the places that
you see them.

Configure the lab2.7/playbooks/site.yaml above to replace your existing task with the
task in the Discussion. Run the playbook as you did earlier. You should observe similar
behavior as before, except a different iApp service, http-iapp2 should now exist.

Also, yes, in the solution’s example, the parameters argument really looks like
that; the iApp service data structures them self are responsible for that. We
(F5 Ansible modules) may be able to improve upon this in the future.

 2.8. Provisioning ASM

2.8. Provisioning ASM

Problem

You need to provision ASM on the BIG-IP

Solution

Use the bigip_provision module.

	Create a lab2.8 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example provision playbook
 hosts: bigip
 connection: local

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Provision ASM
 bigip_provision:
 name: asm
 password: "{{ password }}"
 server: 10.1.1.4
 validate_certs: "{{ validate_certs }}"
 user: "{{ username }}"

Run this playbook, from the lab2.8 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_provision module can provision and de-provision modules from
the system.

This module will wait for a provisioning action to fully complete before
it allows the Playbook to proceed to the next task. This includes waiting
for the system to reboot and for MCPD to come online and be ready to take
new configuration.

All of the above also applies to ASM.

The level that all modules are provisioned at is nominal by default. This
can be changed using the level argument. Valid choices are,

	dedicated

	nominal

	minimum

This module is smart enough to known when certain modules require specific
provisioning levels. For example, vCMP is always dedicated.

 2.9. Applying an ASM policy

2.9. Applying an ASM policy

Problem

You need to apply an ASM policy to the BIG-IP

Solution

Have on-hand an ASM policy in one of the following formats

	Compact

	Non-compact

	Binary

Use the bigip_asm_policy to put the Policy on the BIG-IP and activate it.

Note

You will still need to add this policy to a virtual server using the
bigip_virtual_server module.

	Change into the lab2.9 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example ASM policy playbook
 hosts: bigip
 connection: local

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Create ASM policy, compact XML file
 bigip_asm_policy:
 name: foo-policy
 file: ../files/v2_policy_compact.xml
 active: yes
 user: "{{ username }}"
 password: "{{ password }}"
 server: 10.1.1.4
 validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab2.9 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

Uploading and applying ASM policies is as easy as just specifying
the policy you want to put on the device.

This module supports all of the types of policies that you can put on a
device. It will also support putting ASM policies on older versions of
BIG-IP (they changed things in or around 12.1.0)

Obviously, policies created and exported on newer releases of BIG-IP are
not backwards compatible with older releases of BIG-IP.

 2.10. Creating an LTM policy with rules

2.10. Creating an LTM policy with rules

Problem

You need to create an LTM policy with an ASM rule on a BIG-IP

Solution

Use the bigip_policy module to create a policy with a generic rule.
Then use the bigip_policy_rule module to modify the actions and conditions
on that rule as needed.

	Change into the lab2.10 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example LTM policy playbook
 hosts: bigip
 connection: local

 vars:
 validate_certs: no
 username: admin
 password: admin
 policy_name1: my-ltm-policy

 tasks:
 - name: Provision ASM
 bigip_provision:
 module: asm
 password: "{{ password }}"
 server: 10.1.1.4
 validate_certs: "{{ validate_certs }}"
 user: "{{ username }}"

 - name: Create ASM policy
 bigip_asm_policy:
 name: foo-policy
 file: ../files/v2_policy_compact.xml
 password: "{{ password }}"
 server: 10.1.1.4
 validate_certs: "{{ validate_certs }}"
 user: "{{ username }}"

 - name: Create published policy with 1 stubbed rule
 bigip_policy:
 name: "{{ policy_name1 }}"
 state: present
 rules:
 - rule1
 password: "{{ password }}"
 server: 10.1.1.4
 validate_certs: "{{ validate_certs }}"
 user: "{{ username }}"

 - name: Attach ASM policy to LTM policy rule
 bigip_policy_rule:
 policy: "{{ policy_name1 }}"
 name: rule1
 actions:
 - type: enable
 asm_policy: foo-policy
 password: "{{ password }}"
 server: 10.1.1.4
 validate_certs: "{{ validate_certs }}"
 user: "{{ username }}"

Run this playbook, from the lab2.10 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_policy module is used for several purposes.

First, it creates the containers that can actually contain rules.

Second, it is used to stub out lists of rules before you actually configure
those rules. This is handy when you need to arrange the rule order of the policy.
Since rules can be applied in a specific order, using the bigip_policy module
can set that order (using stub rules) before you actually go about creating the
rules.

If you create rules later, they will always be appended to the list of
current rules. Obviously this may not be what you want, so the bigip_policy
module can be used to re-arrange them. Just specify the list of rules in the
order you want them applied.

At the time of this writing, only a handful of conditions and actions are
available for use in the bigip_policy_rule module. You may file an issue.
if you need a particular condition or action added.

Available conditions types are,

	http_uri

	all_traffic

Available actions types are

	forward (this is used in conjunction with pools)

	enable (this is used in conjunction with ASM policies)

	ignore

In addition to these types, there is also (usually) a value that you will
supply so that a particular type can take effect. These are all documented
in the ansible-doc for the bigip_policy_rule module.

Some of them are

	path_begins_with_any

	asm_policy

	pool

The documentation outlines which values to specify in which cases.

 2.11. Creating a new partition

2.11. Creating a new partition

Problem

You need to create separate partitions on the BIG-IP for different
tenants or resource management

Solution

Use the bigip_partition module.

	Create a lab2.11 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example partition playbook
 hosts: bigip
 connection: local

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Create partition
 bigip_partition:
 name: my-partition
 password: "{{ password }}"
 server: 10.1.1.4
 validate_certs: "{{ validate_certs }}"
 user: "{{ username }}"

Run this playbook, from the lab2.11 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_partition module can manage partitions on the system.

Partitions can be used in other modules after they are created. To use them
in modules that support them, provide the partition parameter.

Some modules, such as bigip_selfip allow you to modify resources that can
exist in another partition. In you want to do this, name those resources
explicitly using their full path (i.e., /foo/vlan1). If you do not name the
full path, the module in question will assume the partition that is supplied
in the partition argument. By default, this is Common.

At the time of this writing, partitions can not be removed until all of the
resources under them have been removed. We realize this is a source of pain,
but there is truly no supported way of removing a partition and all of its
resources. A future update will provide a workaround.

 2.12. Saving your configuration

2.12. Saving your configuration

Problem

You need to save the running configuration of a BIG-IP

Solution

Use the bigip_config module.

	Create a lab2.12 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example configuration saving playbook
 hosts: bigip
 connection: local

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Save running configuration
 bigip_config:
 save: yes
 password: "{{ password }}"
 server: 10.1.1.4
 validate_certs: "{{ validate_certs }}"
 user: "{{ username }}"

Run this playbook, from the lab2.12 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_config module has several purposes, one of which is
to save your configuration.

In addition to this, you can merge an existing configuration that you
might have (in the SCF format) into the running configuration using
the merge_content argument..

You can also reset the running configuration, should you so desire,
using the reset argument.

 2.13. Waiting for your device to (re)boot

2.13. Waiting for your device to (re)boot

Problem

You need to reboot the BIG-IP and wait for it to come back up

Solution

Reboot the device with bigip_command, then use bigip_wait to wait
for the device to come back up and be ready to take configuration.

	Create a lab2.13 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example configuration saving playbook
 hosts: bigip
 connection: local

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Reboot BIG-IP
 bigip_command:
 commands: tmsh reboot
 user: "{{ username }}"
 password: "{{ password }}"
 server: 10.1.1.4
 validate_certs: "{{ validate_certs }}"
 ignore_errors: true

 - name: Wait for shutdown to happen
 pause:
 seconds: 90

 - name: Wait for BIG-IP to actually be ready
 bigip_wait:
 user: "{{ username }}"
 password: "{{ password }}"
 server: 10.1.1.4
 validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab2.13 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

Waiting for the BIG-IP to be available is actually a really difficult thing
to do. It gets better in later versions of BIG-IP (13.1 and beyond). For those
and all the earlier releases (back to 12.0.0) you can use this module.

This module will not return until the BIG-IP is ready to take configuration.
This means that it will wait for,

	mcpd

	iControl REST

	ASM

	vCMP

Notice that I mentioned several features that themselves are problematic to
wait for. This module will accommodate them.

Once this module returns (and Ansible moves on to the next Task) you will be
able to use any F5 Ansible module that would change the configuration.

 2.14. Changing the root password

2.14. Changing the root password

Problem

You need to change the password of the root user

Solution

Use the bigip_user module.

	Create a lab2.14 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example user modification playbook
 hosts: bigip
 connection: local

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Change root password
 bigip_user:
 username_credential: root
 password_credential: ChangedPassword1234
 password: "{{ password }}"
 server: 10.1.1.4
 validate_certs: "{{ validate_certs }}"
 user: "{{ username }}"

Run this playbook, from the lab2.14 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

The bigip_user module can manage user accounts across the system.

Specifying the users and credentials that you want to modify are done by
providing the username_credential or password_credential respectively.

In most cases, this module is idempotent. The way it achieves idempotency
for password changes is that it will attempt to log in to the REST API as
the specified username_credential. If this succeeds, the password is
assumed to have already been changed, and it will not attempt to change
it again.

There is one case where this idempotency for passwords is not supported; the
root account.

While we can change the root account via the REST API, there is no way to
subsequently log into the box as the root user to verify the password has
already been changed. Therefore, for the root user, and the root user only,
a changed event will be raised whenever you change its password.

Because of this, it is recommended that you put any Tasks that change the
root user account into their own, infrequently used, Playbooks.

 3. Module – Slightly more advanced Ansible usage

3. Module – Slightly more advanced Ansible usage

Basic administration should serve you well for quite some time.

As you become more seasoned in using the tool and understanding the
way that both Ansible and your BIG-IP behave, you will want to begin
to brave the world of more advanced playbook and deployment scenarios.

The recipes in this chapter look at even more modules, some of which
you may use less often than others.

Throughout the course of this chapter we will also explore topics in
Ansible that are a step beyond basic. These include prompts, encrypted
files, and interrupting the flows of the a play through the use of
custom arguments.

	3.1. Prompting for user input

	3.2. Keeping secrets secret

	3.3. Local connection versus delegation

	3.4. Starting the playbook at a specific task

	3.5. Stepping through a playbook

	3.6. Sending arguments to your playbook

	3.7. Creating iRules from a list, with loop

	3.8. The fallback F5 module for when there is no idempotent module

	3.9. Running in a virtualenv, and the associated problems

	3.10. Creating roles

 3.1. Prompting for user input

3.1. Prompting for user input

Problem

You need to prompt the user to provide a password to Ansible

Solution

Use the vars_prompt block in your Playbook.

	Create a lab3.1 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example prompting playbook
 hosts: server

 vars_prompt:
 - name: partition
 prompt: "Enter a partition name"
 default: "Common"

 tasks:
 - name: Print out your input
 debug:
 msg: "You provided the {{ partition }} partition for the 'partition' prompt"

Run this playbook, from the lab3.1 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

Prompting is a great way to get input from the user. It can function in both
an interactive, and non-interactive way. We will learn later about that
1.3 Expected File Layout.

Prompts can also blot out the values that you provide, so they can be useful
insinuations where you prompt for a password. This removal of input is done
with the private keyword to the prompt, such as

vars_prompt:
 - name: "some_password"
 prompt: "Enter password"
 private: yes

By default, private-ness is disabled.

You may want to use this instead of storing the password credentials in the
playbook.

	Type the following into the playbooks/site2.yaml file.

- name: An example pool playbook
 hosts: bigip
 connection: local

 vars_prompt:
 - name: "username"
 prompt: "Enter BIG-IP username"
 private: yes
 - name: "password"
 prompt: "Enter BIG-IP password"
 private: yes

 tasks:
 - name: Create web servers pool
 bigip_pool:
 name: web-servers
 lb_method: ratio-member
 password: "{{ password }}"
 server: 10.1.1.4
 user: "{{ username }}"
 validate_certs: no

Run this playbook, from the lab3.1 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site2.yaml

 3.2. Keeping secrets secret

3.2. Keeping secrets secret

Problem

You need to store passwords for use in Ansible

Solution

Use ansible-vault.

The ansible-vault command has three subcommands that are frequently used.

	create

	edit

Creating

Use create to create the initial files that will be vault encrypted.
When you use the create subcommand, Vault will prompt you for a password.
It will then open up a text editor for you to write data to it. Data of any
form can be written, but text is usually the format that is used.

$ ansible-vault create foo.bar
New Vault password:
Confirm New Vault password:
$

When you save and quit the editor, the file will automatically be encrypted
for you. You can look at the encrypted file by cat’ing it.

$ cat foo.bar
$ANSIBLE_VAULT;1.1;AES256
3136653738353561303430646162386631613739306236386538396637326631383930623232663633306433633865343636393630376136303463396435
38390a32373037313030653365613963643237643033663164376264313637
61636134633863356536386133383065376533643864356362653737396632
33373531650a39643034336463326138653439633637643033363735383665
64313134613337
$

Editing

You may edit an existing Vault file by using a similar command

$ ansible-vault edit foo.bar
Vault password:

This time you will be asked for the password so that you can decrypt the file.

Discussion

Vault is a tool that comes pre-installed with Ansible. It is a decent way to
protect data that is not publicly available. If you want to make data publicly
available, it is recommended that you use a technology like GPG.

Vault requires that a password be specified so that it can decrypt files.
That password can either be specified on the CLI or in a file.

It is recommended that for automation, this information is stored in a file.

If you store the password in a file, you can provide this file with the
--vault-password-file argument to the ansible-vault command. This file does
not need to be static though. It can also be a script that gets the password
dynamically. For instance, if you stored the password itself in a organization
wide password-manager.

 3.3. Local connection versus delegation

3.3. Local connection versus delegation

Problem

You need to know when to use connection: local and delegate_to: localhost

Solution

An explanation of the difference between these two is here [http://clouddocs.f5.com/products/orchestration/ansible/devel/usage/connection-local-or-delegate-to.html]. It is reprinted here for your convenience.

There are three major differences between connection: local` and
``delegate_to: localhost:

	connection: local applies to all hosts

	delegate_to applies to specific hosts

	delegate_to runs your task on one host, in the context of another host

Connection: local

First, connection: local applies to all hosts in the playbook. If you find
yourself mixing and matching BIG-IP hosts with things like web servers, it would
cause your legitimate ssh connections to fail.

This is because when you specify connection: local, every host is now considered
to have 127.0.0.1 as their IP address.

This is likely not what you want.

For example,

	Create a lab3.3 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a server host to the ansible inventory and give it,

	an ansible_host fact with the value 10.1.1.6

	Type the following into the playbooks/site.yaml file.

- name: This is my play
 hosts: server
 connection: local

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Disable pool member for upgrading
 bigip_pool_member:
 pool: web-servers
 port: 80
 name: "{{ inventory_hostname }}"
 monitor_state: disabled
 session_state: disabled
 password: "{{ password }}"
 server: 10.1.1.4
 user: "{{ username }}"
 validate_certs: "{{ validate_certs }}"

 - name: Upgrade the webserver
 apt:
 name: apache2
 state: latest

 - name: Re-enable pool member after upgrading
 bigip_pool_member:
 pool: web-servers
 port: 80
 name: "{{ inventory_hostname }}"
 monitor_state: enabled
 session_state: enabled
 password: "{{ password }}"
 server: 10.1.1.4
 user: "{{ username }}"
 validate_certs: "{{ validate_certs }}"

Run this playbook, from the lab3.3 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

This playbook will run, but it’s actually not correct. The reason is because of the
second task.

The second task is not what you want because it attempts to run the apt module on
your local machine. Your playbook, however, intended to upgrade the remote
webserver.

So you installed apache on the Ansible controller machine.

You can verify this with the following command

	dpkg --list | grep apache

For example, here is the output on my ansible controller

$ dpkg --list | grep apache
ii apache2 2.4.18-2ubuntu3.5 amd64 Apache HTTP Server
ii apache2-bin 2.4.18-2ubuntu3.5 amd64 Apache HTTP Server (modules and other binary files)
ii apache2-data 2.4.18-2ubuntu3.5 all Apache HTTP Server (common files)
ii apache2-utils 2.4.18-2ubuntu3.5 amd64 Apache HTTP Server (utility programs for web servers)

Whoops.

You can remove apache on the Ansible controller with this command

	apt-get remove --purge apache2*

Delegation

You can remedy this situation with delegate_to. For the most part, you will
use this feature when the connection line is set to ssh (the default).

Delegation allows you to mix and match remote hosts. You continue to use an SSH
connection for legitimate purposes, such as connecting to remove servers, but
for the devices that don’t support this option, you delegate their tasks.

For example, this playbook will correct your problem:

	Change your playbooks/site.yaml file to reflect the changes below.

- name: This is my play
 hosts: server

 vars:
 validate_certs: no
 username: admin
 password: admin

 tasks:
 - name: Disable pool member for upgrading
 bigip_pool_member:
 pool: web-servers
 port: 80
 name: "{{ inventory_hostname }}"
 monitor_state: disabled
 session_state: disabled
 password: "{{ password }}"
 server: 10.1.1.4
 user: "{{ username }}"
 validate_certs: "{{ validate_certs }}"
 delegate_to: localhost

 - name: Upgrade the webserver
 apt:
 name: apache2
 state: latest

 - name: Re-enable pool member after upgrading
 bigip_pool_member:
 pool: web-servers
 port: 80
 name: "{{ inventory_hostname }}"
 monitor_state: enabled
 session_state: enabled
 password: "{{ password }}"
 server: 10.1.1.4
 user: "{{ username }}"
 validate_certs: "{{ validate_certs }}"
 delegate_to: localhost

The delegate_to parameter delegates the running of the task to some
completely different machine.

However, instead of the module having access to that totally different machine’s
facts, it instead has the facts of the inventory item where the delegation happened.
This is using the context of the host.

We also removed the connection: local line. This means that Ansible will try to
connect over SSH to all of our hosts on the hosts: line.

Discussion

Quiz time.

In the above example, even though the first and third tasks are running on
the Ansible controller (instead of the remote webserver), what is the value
of the {{ inventory_hostname }} variable?

	localhost

	server

	something else

If you answered server then you are correct.

This is context. The task executed on localhost using server’s
context, and therefore, its facts.

 3.4. Starting the playbook at a specific task

3.4. Starting the playbook at a specific task

Problem

You need to start at a specific task in a playbook

Solution

Use the --start-at-task argument of ansible-playbook

	Create a lab3.4 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example start-at playbook
 hosts: bigip
 connection: local

 environment:
 F5_SERVER: "{{ ansible_host }}"
 F5_USER: admin
 F5_PASSWORD: admin
 F5_SERVER_PORT: 443
 F5_VALIDATE_CERTS: no

 vars:
 send_string1: "GET /bizdev\r\n"
 monitor_name: "monitor1"

 tasks:
 - name: Create HTTP Monitor
 bigip_monitor_http:
 name: "{{ monitor_name }}"
 send: "{{ send_string1 }}"
 register: result

 - name: Assert Create HTTP Monitor
 assert:
 that:
 - result is changed
 - result.send == send_string1

 - name: Create HTTP Monitor - Idempotent check
 bigip_monitor_http:
 name: "{{ monitor_name }}"
 send: "{{ send_string1 }}"
 register: result

 - name: Assert Create HTTP Monitor - Idempotent check
 assert:
 that:
 - result is not changed

You can see that we have 4 Tasks in this Playbook.

You can run this Playbook once and it will do its thing. Then, assume that you
want to run the playbook again, but you want to start at the
Create HTTP Monitor - Idempotent check Task.

You can do this by specifying the Task name to the -—start-at-task argument.

$ ansible-playbook -i inventory/hosts playbooks/site.yaml --start-at-task "Create HTTP Monitor - Idempotent check"

The Play will run, but will start at the third Task this time.

But there’s an error that’s raised. Why?

The answer, is because you started at the task which is intended to be the idempotent
check. Run the playbook again. Does the result change?

Discussion

This argument is extremely valuable when it comes to debugging or running specific
blocks of a Playbook over.

There are certain things that you need to be aware of when using this argument though.

	It will not run any prior tasks. Therefore, if you will start at (or have
a future) Task that relies on some information from before the Task you are
starting it, it will not be available. This will cause your Play to fail when it
reaches the Task that needs this information

	If you have multiple Tasks with the same name, the first Task found is the one
that will be used.

	ALWAYS NAME YOUR TASKS!!1!!1!!!!!1 if you do not, it makes it incredibly
difficult to start-at them in the future.

	If the Task you are starting at is in a role, prefix the role name to the task
followed by spacing and a colon. For example,
—start-at-task "role1 : This is my roles task"

Despite the constraints, this is a go-to feature that you will use all the time.
Remember it.

 3.5. Stepping through a playbook

3.5. Stepping through a playbook

Problem

You need to step through each task because, by default, Ansible will fire off tasks
as fast as possible

Solution

Use the --step argument of ansible-playbook

	Create a lab3.5 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example stepped playbook
 hosts: bigip
 connection: local

 environment:
 F5_SERVER: "{{ ansible_host }}"
 F5_USER: admin
 F5_PASSWORD: admin
 F5_SERVER_PORT: 443
 F5_VALIDATE_CERTS: no

 vars:
 send_string1: "GET /hr\r\n"
 monitor_name: "monitor2"

 tasks:
 - name: Create HTTP Monitor
 bigip_monitor_http:
 name: "{{ monitor_name }}"
 send: "{{ send_string1 }}"
 register: result

 - name: Assert Create HTTP Monitor
 assert:
 that:
 - result is changed
 - result.send == send_string1

 - name: Create HTTP Monitor - Idempotent check
 bigip_monitor_http:
 name: "{{ monitor_name }}"
 send: "{{ send_string1 }}"
 register: result

 - name: Assert Create HTTP Monitor - Idempotent check
 assert:
 that:
 - result is not changed

 - name: Remove HTTP Monitor
 bigip_monitor_http:
 name: "{{ monitor_name }}"
 state: absent
 register: result

You can see that we have 5 Tasks in this Playbook.

You have this test playbook, but you are not sure if they Tasks are actually doing
their work because the last Task removes the monitor. How do you check that 1 actually
changed the remote device? Sure, it may report changed, but did it really change?

You can do this by specifying the —-step argument to your Playbook.

$ ansible-playbook -i inventory/hosts playbooks/site.yaml --step

The Play will run, but will Ansible will prompt you to either do the Task, Skip the
Task, or Continue on with all Tasks.

For example,

$ ansible-playbook -i inventory/hosts playbooks/site.yaml --step

PLAY [An example partition playbook] **
Perform task: TASK: Gathering Facts (N)o/(y)es/(c)ontinue: y

Perform task: TASK: Gathering Facts (N)o/(y)es/(c)ontinue: ***

TASK [Gathering Facts] ***
ok: [bigip1]
Perform task: TASK: Create HTTP Monitor (N)o/(y)es/(c)ontinue:
^C

$

Discussion

Stepping is something I use frequently when I am writing a Playbook initially.
Between each step, Ansible will pause indefinitely and let you do something
out-of-band of the Playbook.

Often, I will do a task, then do either a series of debug work, or configuration
validation. For example, if I am using a new module, did the module actually
change my BIG-IP as I expected it would?

For debugging, I can pause right before a Task and make sure that,

	the device is indeed ready for my config

	any log files I am going to tail are empty so I don’t need to go look through them

	Any debug-level logging is configured on any remote devices

	etc

I can then run the Task, and proceed with the other future Tasks as needed. Once
I am ready to quit, I can ctrl+c the Playbook to stop all execution. Or, I can
press c to tell Ansible to proceed on with the entire rest of the Playbook.

 3.6. Sending arguments to your playbook

3.6. Sending arguments to your playbook

Problem

You need to specify “vars” values automatically, such as via a command line.

Solution

Use the -e, or --extra-vars argument of ansible-playbook

Remember the Playbook we had back in Lab 3.1?
That Playbook prompted us for variables every time we ran it. Now we want to
run the same playbook without getting those prompts.

We can supply the prompt variable names, and their values, on the command line.

	Change into the lab3.1 directory.

Run this playbook, from the lab3.1 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml -e "username=admin password=admin"

Discussion

This method of specifying values is not reserved for credentials.

In most cases, it should not be used for credentials in fact. This is because
the Ansible command (including the extra arguments) will show in the running
process list of your Ansible controller.

The more common situations are when you are prompting for specific configuration
related to something on your network. For example, your Playbook may be flexible
enough to take a given region or cell.

This would look like the following

$ ansible-playbook -i inventory/hosts bootstrap.yaml -e "region=ord cell=c0006"

The Playbook would not need to change, but you could continually provide values to
variables in the Playbook to keep from writing them into the actual Playbook itself.

 3.7. Creating iRules from a list, with loop

3.7. Creating iRules from a list, with loop

Problem

You need to upload a series of iRules to a BIG-IP

Solution

Use the bigip_irule module and the loop keyword.

	Change into the lab3.7 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Change the playbooks/site.yaml file to resemble the following.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

- name: An example looping iRule playbook
 hosts: bigip
 connection: local

 environment:
 F5_SERVER: "{{ ansible_host }}"
 F5_USER: admin
 F5_PASSWORD: admin
 F5_SERVER_PORT: 443
 F5_VALIDATE_CERTS: no

 tasks:
 - name: Create iRule in LTM
 bigip_irule:
 content: "{{ lookup('file', item.file) }}"
 module: ltm
 name: "{{ item.name }}"
 loop:
 - name: irule1
 file: ../files/irule-01.tcl
 - name: irule2
 file: ../files/irule-02.tcl
 - name: irule3
 file: ../files/irule-03.tcl

Run this playbook, from the lab3.7 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

iRules are managed on the remote system using the bigip_irule module. Since
the possibility exists though that there may be many iRules you want to upload,
one way of accomplishing that is to use the loop keyword in Ansible.

Notice that the loop keyword itself is not a parameter to the module because
it is not vertically aligned with the parameters underneath the bigip_irule
YAML above.

Instead, this keyword is internal to Ansible itself. It’s available to nearly
every module. Therefore you can loop with things like pools, virtual servers,
nodes, etc.

The way to correctly read the above is, “run the bigip_irule module for each
item in the loop list”.

There are also variables in the above playbook that we haven’t seen before;
item.name and item.file. What do these mean?

When you use the loop construct, it will automatically create a variable for
you called item. The value in this variable will change with each iteration of
the loop to match the value in the loop.

The dot that separates item from the other words is Ansible lingo for a method
of referring to subkeys.

In our loop list, we specified a list of dictionaries. A dictionary has key
names, and those names can have values of any type. In our case, the key names for
each item in the list are name and file.

Therefore, when we refer to the variable item.name we are referring to the
name key’s value of the current item in the list.

The above loop causes the task to run three times; one for each item in the loop.

 3.8. The fallback F5 module for when there is no idempotent module

3.8. The fallback F5 module for when there is no idempotent module

Problem

You need to use a tmsh command that does not have an Ansible module equivalent

Solution

Use the bigip_command module

	Create a lab3.8 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

	Type the following into the playbooks/site.yaml file.

- name: An example command playbook
 hosts: bigip
 connection: local

 environment:
 F5_SERVER: "{{ ansible_host }}"
 F5_USER: admin
 F5_PASSWORD: admin
 F5_SERVER_PORT: 443
 F5_VALIDATE_CERTS: no

 tasks:
 - name: Create a datagroup using tmsh
 bigip_command:
 commands: "create /ltm data-group internal applicationIdRealm type string records add { epc.foo.bar.org { data 16777264 } }"

Run this playbook, from the lab3.8 directory like so

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Discussion

This module is what we recommend for all situations where you need to do
something that a current module does not support.

This module will always warn you when you use it for things that change
configuration. These warnings will inform you to file an issue on our Github
Issue tracker for a feature enhancement.

Ultimately, the goal we want to get to is to have a suite of modules that
meets all the needs of customers that use Ansible. Since that is not yet possible,
the bigip_command is there to accommodate.

This module can also be used over SSH, but password SSH is the only method known
to work at this time.

 3.9. Running in a virtualenv, and the associated problems

3.9. Running in a virtualenv, and the associated problems

Problem

You need to run Ansible from a Python virtualenv environment

Solution

This is possible, but it requires a keen understanding of how Ansible works, as well as a change to the host_vars for a single host
(or group_vars if you want to apply this to multiple hosts)

	Change into the lab3.9 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Change the playbooks/site.yaml file to resemble the following.

	Add a bigip host to the ansible inventory and give it an ansible_host
fact with the value 10.1.1.4

- name: An example command playbook
 hosts: bigip
 connection: local

 environment:
 F5_SERVER: "{{ ansible_host }}"
 F5_USER: admin
 F5_PASSWORD: admin
 F5_SERVER_PORT: 443
 F5_VALIDATE_CERTS: no

 tasks:
 - name: Create a datagroup using tmsh
 bigip_command:
 commands: "tmsh show sys version"

Next, we will uninstall our f5-sdk package from the system. Most people consider
this to be an OK thing to do because, after all, they will be running Ansible
from a virtualenv.

pip uninstall --yes f5-sdk bigsuds

There is a virtualenv pre-installed on your Ansible Controller. You can activate
it with the following command

$ source /.virtualenvs/lab3.9/bin/activate

You will know that you are in the virtualenv, because your prompt will change.
It should look similar to this, where the word ansible prefixes the CLI prompt.

(lab3.9) $

You can verify that the necessary pip libraries are installed with the following
command.

$ pip freeze

You should see in this list, an entry for f5-sdk.

Let’s now run the Ansible Playbook.

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

If your playbook fails, that is to be expected.

Now, change the inventory/hosts file and add the following fact to the bigip line.

ansible_python_interpreter=/.virtualenvs/lab3.9/bin/python

Re-run the ansible-playbook command from above.

If your playbook succeeds, that is expected. Proceed to the Discussion for a deeper
answer as to what is happening.

Be sure to re-install the F5 Ansible dependencies that you removed as we will use them
in future labs

$ pip install f5-sdk bigsuds

Discussion

Why does it fail the first time? The answer is because Ansible is not running
your module in the virtualenv. It’s running it on the system’s Python.

That doesn’t make sense though, it should be running be running in the virtualenv.
Wrong.

A brief segue is necessary

Ansible’s default behavior is that it always SSH’s to the remote host. Always.
Even when connection: local is set, it is running…in a sense…on the “remote” host;
only this time, localhost is considered the remote host.

Setting connection: local only eliminates the SSH protocol, it does not, however,
eliminate the fact that Ansible is going to always run your module using
/usr/bin/python.

By default, modules point at /usr/bin/python. Period.

So Ansible itself runs just fine in a virtualenv. The problem is that when it
communicates with the “remote” host, the module is going to run with /usr/bin/python.
That means that the F5 dependency libraries are also going to be looked up according
to /usr/bin/python. If you installed your dependencies in a virtualenv, that
virtualenv’s python is not /usr/bin/python.

This is why you must set the ansible_python_interpreter for any hosts, or groups
of hosts, where the python interpreter differs. We did this in our solution for a single
host when we changed the inventory/hosts file. We could have also created a file
at inventory/group_vars/all.yaml and those facts would apply to all hosts in your
playbook.

 3.10. Creating roles

3.10. Creating roles

Problem

You need to reuse the work you have just done in other playbooks without
repeatedly writing tasks.

Solution

Use Roles.

You may combine any set of Tasks that we have used previously in this role.

A role is an abstraction in which a directory named after the role is created
in the roles directory. In the first module, we learned about the
expected file layout. Part of this layout is a roles
directory. It is that directory in which you put the role directory.

	Change into the lab3.10 directory in the labs directory.

	Setup the filesystem layout to mirror the one described in lab 1.3.

	Make a role named app1

$ mkdir -p roles/app1

A role directory has the same directory structure that we created in the first
module. There are exceptions though. They are

	the playbooks directory has been replaced with tasks

	there is no roles directory in a role

	there is no inventory directory in a role

	When a role is included, Ansible only calls a file named main.yaml in the
tasks directory

	Several new directories, such as vars and defaults are available to add

With these constraints in place, we create the following directory structure
in the app1 directory.

.
├── defaults
│ └── main.yaml
├── files
├── tasks
│ └── main.yaml
└── templates

With this structure in place, we can cherry pick Tasks from any of our other
Playbook we have written and add them to the tasks/main.yaml file.

Our app1 role will do the following

	consume a tenant variable, defaulting to Common

	consume a bigip_port variable, defaulting to 443

	consume a validate_certs variable, defaulting to no

	consume a bigip_username variable

	consume a bigip_password variable

	consume a bigip_server variable

	fail if any of the variables above are not defined

	create a partition using the name of the tenant variable

	create a pool named app1-pool on the tenant partition. Use the round-robin
load balancing method

	create a single iRule using one of the same iRule files we used from
the earlier lab. Name it irule1

	create a virtual server named app1-vs on the tenant partition.
Assign it the iRule and pool you created. It should have a destination of
10.1.10.240 and a port of 80. Finally, set snat to Automap

	create a node for each host in the playbook using the current ansible_host
IP address

	add the node to the app1-pool pool

	Save the running configuration

To accomplish the above, let’s do the following

Construct a playbook to use your role

Create the file playbooks/site.yaml in the lab3.10 directory; not the role directory. Put the following in it.

- name: Use app1 role
 hosts: app1
 connection: local

 vars_prompt:
 - name: bigip_username
 prompt: "Enter the BIG-IP username"
 private: no
 - name: bigip_password
 prompt: "Enter the BIG-IP password"
 private: yes
 - name: bigip_server
 prompt: "Enter the BIG-IP server address"
 private: no

 roles:
 - app1

This is the playbook we will use.

Create default variables

In the app1 role directory, edit the defaults/main.yaml file, add the following

tenant: Common
bigip_port: 443
validate_certs: no

This accomplishes bullets #1 to #3

Create a setup task list

Create the file tasks/setup.yaml

In this file, put the following

- name: Check to see if bigip username credential missing
 fail:
 msg: "You must provide a 'bigip_username' variable"
 when: bigip_username is not defined

- name: Check to see if bigip passwrd credential missing
 fail:
 msg: "You must provide a 'bigip_password' variable"
 when: bigip_password is not defined

- name: Check to see if bigip server credential missing
 fail:
 msg: "You must provide a 'bigip_server' variable"
 when: bigip_server is not defined

This accomplishes bullets #4 to #7

Create a main task list

Edit the tasks/main.yaml file to include the following

- import_tasks: setup.yaml

- name: Create tenant partition
 bigip_partition:
 name: "{{ tenant }}"
 user: "{{ bigip_username }}"
 password: "{{ bigip_password }}"
 validate_certs: "{{ validate_certs }}"
 server: "{{ bigip_server }}"
 server_port: "{{ bigip_port }}"
 delegate_to: localhost

- name: Create pool
 bigip_pool:
 name: "{{ tenant }}-pool1"
 lb_method: round-robin
 partition: "{{ tenant }}"
 user: "{{ bigip_username }}"
 password: "{{ bigip_password }}"
 validate_certs: "{{ validate_certs }}"
 server: "{{ bigip_server }}"
 server_port: "{{ bigip_port }}"
 delegate_to: localhost

- name: Create iRule
 bigip_irule:
 content: "{{ lookup('file', 'irule-01.tcl') }}"
 module: ltm
 name: irule1
 partition: "{{ tenant }}"
 user: "{{ bigip_username }}"
 password: "{{ bigip_password }}"
 validate_certs: "{{ validate_certs }}"
 server: "{{ bigip_server }}"
 server_port: "{{ bigip_port }}"
 delegate_to: localhost

- name: Create virtual server
 bigip_virtual_server:
 name: app1-vs
 destination: "{{ vs_destination }}"
 port: 80
 irules:
 - irule1
 profiles:
 - http
 snat: Automap
 partition: "{{ tenant }}"
 user: "{{ bigip_username }}"
 password: "{{ bigip_password }}"
 validate_certs: "{{ validate_certs }}"
 server: "{{ bigip_server }}"
 server_port: "{{ bigip_port }}"
 delegate_to: localhost

- name: Create node for physical machine
 bigip_node:
 address: "{{ node_destination }}"
 name: "{{ inventory_hostname }}"
 user: "{{ bigip_username }}"
 password: "{{ bigip_password }}"
 validate_certs: "{{ validate_certs }}"
 server: "{{ bigip_server }}"
 server_port: "{{ bigip_port }}"
 delegate_to: localhost

- name: Add node to pool
 bigip_pool_member:
 pool: "{{ tenant }}-pool1"
 partition: "{{ tenant }}"
 host: "{{ node_destination }}"
 port: 80
 user: "{{ bigip_username }}"
 password: "{{ bigip_password }}"
 validate_certs: "{{ validate_certs }}"
 server: "{{ bigip_server }}"
 server_port: "{{ bigip_port }}"
 delegate_to: localhost

- name: Save running config
 bigip_config:
 save: yes
 user: "{{ bigip_username }}"
 password: "{{ bigip_password }}"
 validate_certs: "{{ validate_certs }}"
 server: "{{ bigip_server }}"
 server_port: "{{ bigip_port }}"
 delegate_to: localhost

This accomplishes bullets #8 to #14

Move files to the appropriate directories

In the task list above, we use an iRule file. To make use of it in this role, we
need to put it in the files directory because we used the file lookup.

From the lab3.10 directory, issue the following command

cp files/irule-01.tcl roles/app1/files/

Run the playbook

With the above in place, you can run the playbook as you normally would

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Your play, and role, should execute as expected and configure the device.

Discussion

As you can see from the solution above, a role is a way to encapsulate a body
of work. This role could have been zipped up and given to anyone else and they
could have extracted it and run it the same way that you did.

Roles can include their own files, templates, and even custom modules. They
should be your go-to solution for all your work that is beyond a single playbook.

With our solution in place, our directory structure now looks like this

.
├── defaults
│ └── main.yaml
├── files
│ └── irule-01.tcl
├── tasks
│ ├── main.yaml
│ └── setup.yaml
└── templates

Earlier I said that Ansible will only call the tasks/main.yaml file. That’s
perfectly ok though because we can include as many other files as we need.

We did just take with the import_tasks action in the tasks/main.yaml file.
This action will cause Ansible to read in this file and replace the import line
with the content of the file.

The defaults directory we made use of stores default variables. These variables
may be overridden via the CLI as we learned in an earlier lab.

Notice also how when we used the file lookup, we didn’t need to refer to the full
path to the file. This is because, in roles, if you used the file lookup, Ansible
assumes the file being looked up is in the files directory of the role.

The template lookup works much the same way. If you use the following in a role

lookup(‘template’, ‘file.txt’)

Ansible will implicitly look in the templates directory of your role.

 4. Module – Debugging Ansible problems

4. Module – Debugging Ansible problems

An advanced, but equally necessary topic is debugging. It is
inevitable that things will go wrong.

The problem may be in the F5 modules, or even Ansible itself.
When a problem arises, it is less important that you know what
the problem is, than know how to diagnose what the problem is.

These recipes will expose you to diagnosing problems with modules
and how you can peel back the Ansible layer to gain better insight
into what went wrong.

	4.1. Enable verbose debugging

	4.2. Save and view remote module execution code

	4.3. Filing bugs

	4.4. Getting assistance with a problem

	4.5. Enable debug output

	4.6. Dealing with “bigsuds/f5-sdk not found” errors

	4.7. Dealing with “authorization failed” errors

	4.8. Dealing with unsupported versions

 4.1. Enable verbose debugging

4.1. Enable verbose debugging

Problem

You want to get more context about what is happening when a Playbook runs,
because right now you have none

Solution

Provide the -vvvv argument to the ansible-playbook command.

Enabling verbose output can be done as follows,

	Change into the lab4.1 directory in the labs directory.

$ ansible-playbook -i inventory/hosts playbooks/site.yaml -vvvv

Running this will output more output that you would normally get. This
playbook includes an artificial module with an error message that would not
normally be displayed if you had not included the verbose output.

This is normal output

TASK [Raises an error] ***
An exception occurred during task execution. To see the full traceback, use
-vvv. The error was: Exception: An error occurred
fatal: [localhost]: FAILED! => {"changed": false, "module_stderr": "Traceback
(most recent call last):\n File \"/Users/trupp/.ansible/tmp/ansible-tmp-1512
284216.7-97617236630854/foo41.py\", line 24, in <module>\n a1()\n File
\"/Users/trupp/.ansible/tmp/ansible-tmp-1512284216.7-97617236630854/foo41.py\",
line 13, in a1\n b1()\n File \"/Users/trupp/.ansible/tmp/ansible-tmp-15122
84216.7-97617236630854/foo41.py\", line 16, in b1\n c1()\n File \"/Users/
trupp/.ansible/tmp/ansible-tmp-1512284216.7-97617236630854/foo41.py\", line 19,
in c1\n d1()\n File \"/Users/trupp/.ansible/tmp/ansible-tmp-1512284216.7-9
7617236630854/foo41.py\", line 22, in d1\n raise Exception(\"An error occur
red\")\nException: An error occurred\n", "module_stdout": "", "msg": "MODULE
FAILURE", "rc": 0}

This is verbose output

TASK [Raises an error] **
task path: /Users/trupp/src/f5-gsts-labs-ansible-cookbook/docs/labs/playbooks/lab4.1.yaml:8
Using module file /Users/trupp/src/f5-gsts-labs-ansible-cookbook/docs/labs/library/foo41.py
<localhost> ESTABLISH LOCAL CONNECTION FOR USER: trupp
<localhost> EXEC /bin/sh -c 'echo ~ && sleep 0'
<localhost> EXEC /bin/sh -c '(umask 77 && mkdir -p "` echo /Users/trupp/
 .ansible/tmp/ansible-tmp-1512284240.61-66631414390058 `" && echo ansible-
 tmp-1512284240.61-66631414390058="` echo /Users/trupp/.ansible/tmp/ansibl
 e-tmp-1512284240.61-66631414390058 `") && sleep 0'
<localhost> PUT /var/folders/jc/9d1188j962931rhqrlm4173w5j5m45/T/tmpOT27vx TO
 /Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/foo41.py
<localhost> PUT /var/folders/jc/9d1188j962931rhqrlm4173w5j5m45/T/tmpZwW0ZP TO
 /Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/args
<localhost> EXEC /bin/sh -c 'chmod u+x /Users/trupp/.ansible/tmp/ansible-tmp-
 1512284240.61-66631414390058/ /Users/trupp/.ansible/tmp/ansible-tmp-1512284
 240.61-66631414390058/foo41.py /Users/trupp/.ansible/tmp/ansible-tmp-1512
 284240.61-66631414390058/args && sleep 0'
<localhost> EXEC /bin/sh -c '/usr/bin/python /Users/trupp/.ansible/tmp/ansi
 ble-tmp-1512284240.61-66631414390058/foo41.py /Users/trupp/.ansible/tmp/a
 nsible-tmp-1512284240.61-66631414390058/args; rm -rf "/Users/trupp/.ansib
 le/tmp/ansible-tmp-1512284240.61-66631414390058/" > /dev/null 2>&1 && sle
 ep 0'
The full traceback is:
Traceback (most recent call last):
 File "/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/foo41.py", line 24, in <module>
 a1()
 File "/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/foo41.py", line 13, in a1
 b1()
 File "/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/foo41.py", line 16, in b1
 c1()
 File "/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/foo41.py", line 19, in c1
 d1()
 File "/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/foo41.py", line 22, in d1
 raise Exception("An error occurred")
Exception: An error occurred

fatal: [localhost]: FAILED! => {
 "changed": false,
 "module_stderr": "Traceback (most recent call last):\n File \"/Users/trupp/
 .ansible/tmp/ansible-tmp-1512284240.61-66631414390058/foo41.py\", line 24,
 in <module>\n a1()\n File \"/Users/trupp/.ansible/tmp/ansible-tmp-1512
 284240.61-66631414390058/foo41.py\", line 13, in a1\n b1()\n File \"/U
 sers/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/foo41.py\
 ", line 16, in b1\n c1()\n File \"/Users/trupp/.ansible/tmp/ansible-tm
 p-1512284240.61-66631414390058/foo41.py\", line 19, in c1\n d1()\n Fil
 e \"/Users/trupp/.ansible/tmp/ansible-tmp-1512284240.61-66631414390058/foo4
 1.py\", line 22, in d1\n raise Exception(\"An error occurred\")\nExcepti
 on: An error occurred\n",
 "module_stdout": "",
 "msg": "MODULE FAILURE",
 "rc": 0
}

Discussion

I don’t take my chances when running playbooks. I always use verbose logging.

You will find over time, that if you do not do this, that you will miss out on
some of the more critical information that may be required to track down a problem.

The verbose information that is shown is typically the first step in debugging a
problem, and the F5 Ansible developers will want it from you when you report a problem.

Verbose output includes several key pieces of information that will be used to
debug problems even further. These include

	The connection information

	Delegation information

	Remote playbook execution files

	Structured failure output

We will discuss the third bullet in more detail in a lab in the next lab.

 4.2. Save and view remote module execution code

4.2. Save and view remote module execution code

Problem

You need to get the actual contents of a module that are run on the remote machine

Solution

The solution to this problem is a series of steps that can be near impossible to
guess at. Let’s follow these steps to show you.

First, set the ANSIBLE_KEEP_REMOTE_FILES variable to 1 when you run a playbook.
Additionally, run the playbook with -vvv. Using the playbook in
lab4.2/playbooks/site.yaml run the following command,

$ ANSIBLE_KEEP_REMOTE_FILES=1 ansible-playbook -i inventory/hosts playbooks/site.yaml -vvv

After the playbook has finished execution, note the location of the module file
that was copied to the remote machine.

The module file is buried in the verbose output that the playbook generates.
Refer to the image below for an example.

[image: image1]

With this file found, we can ssh to the remote host in which we were running
this playbook on; server

$ ssh 10.1.1.6

and ls the file to make sure it exists

$ ls -l /root/.ansible/tmp/ansible-tmp-1512367718.13-215224110025969/apt.py
-rwx------ 1 root root 102974 Dec 4 06:08 /root/.ansible/tmp/ansible-tmp-1512367718.13-215224110025969/apt.py
$

This file is a copy of the module and the libraries that it includes from
Ansible. It can be extracted with the explode argument

$ /root/.ansible/tmp/ansible-tmp-1512367718.13-215224110025969/apt.py explode
Module expanded into:
/root/.ansible/tmp/ansible-tmp-1512367718.13-215224110025969/debug_dir
$

It provides you with the directory where the content of the module was extracted to.

$ ls -l
total 48
drwxr-xr-x 3 root root 4096 Dec 4 06:13 ansible
-rw-r--r-- 1 root root 38495 Dec 4 06:13 ansible_module_apt.py
-rw-r--r-- 1 root root 441 Dec 4 06:13 args
$

The file named ansible_module_apt.py is the copy of module used in your
task. You can edit it directly and re-run the changed module and associated
files by using the execute argument to the same script you provided the
explode argument to.

$ /root/.ansible/tmp/ansible-tmp-1512367718.13-215224110025969/apt.py execute

The module will be run as if it were being run directly from the Ansible controller.

Discussion

The method you’ve just learned is used extensively in the beginning stages of
how to debug modules. Even to this day I use it for extreme cases where I am
unable to diagnose a problem and need to execute the exact module code on a
remote machine.

This method requires no remote debuggers (like may be used in typical module
development or debugging) and it’s a rather straight-forward method once you
experience the usage pattern.

	ANSIBLE_KEEP_REMOTE_FILES

	/path/to/module.py explode

	change directory and edit

	/path/to/module.py execute

The reason that we need to do the explode part in particular is because
Ansible compresses the files that are part of the module, before it sends
it to the remote host. This sacrifices some CPU time on the Ansible controller
for what can often be a longer time transporting data over the network.

You can actually look at the compressed form if you less the file,

$ less /root/.ansible/tmp/ansible-tmp-1512367718.13-215224110025969/apt.py

It will produce the self-extracting script; a large portion of which will be
the compressed module data

[image: image2]

Near the bottom of the self-extractor is also a blurb about how to use the
code should you get hung up. Here is an excerpt

[image: image3]

There are three commands, but only two that are frequently used, they are

	extract

	execute

	excommunicate (almost never used)

One last thing. It is not recommended that you run all your playbook with
ANSIBLE_KEEP_REMOTE_FILES all the time. This is because keeping these
remote files causes a number of temporary files to build up on the remote host.

This can lead to disk space errors, filesystem errors, and even Ansible errors
if too many temp files exist (name collisions can happen for instance).

So it is best that you reserve the usage of this method for the times when you
need to do serious squirrel levels of debugging in either your own code, or the
code of others.

 4.3. Filing bugs

4.3. Filing bugs

Problem

You need to report a bug in an F5 Ansible module

Solution

Create an issue on our Github issue tracker here [https://github.com/F5Networks/f5-ansible/issues]

When creating issues, you will be asked to fill out a number of fields.

	Issue type

	Component name

	Ansible version

	BIGIP version

	Library versions

	Configuration

	OS/Environment

	Summary

	Steps to reproduce

	Expected results

	Actual results

It is critical that you provide as much information as possible if you hope to
get your bug fixed.

Discussion

All customers, F5’ers, partners, everyone…needs to file issues on Github. This is
a publicly operated project and we use the publicly available Github issue tracker
to manage it.

It is not acceptable to directly email Tim with a bug you found. He will direct
you to the Issue tracker.

Why is it so important that you log bugs in the issue tracker? Because of the way
that we manage fixes in our source tree. Every issue has a dedicated test file that
is created for it. Therefore, if you do not create an issue, we cannot create a file
in our source tree to test a fix.

I repeat, because I cannot stress this enough,

File bug reports on the F5 Ansible Github Issue Tracker

 4.4. Getting assistance with a problem

4.4. Getting assistance with a problem

Problem

You need to ask for help in using an F5 Ansible module or debugging a problem in a module

Solution

Use either of the following channels

	f5CloudSolutions Slack team [https://f5cloudsolutions.herokuapp.com/] in the #ansible channel

	Join, and send email to, *sme_ansible

Both channels are monitored with roughly equal consistency. However, if you do not receive a timely response on one channel, consider asking on another channel

Discussion

You have the option of getting real-time interactive help (via Slack), or,
semi-realtime help (via email).

The maintainers of the F5 Ansible modules are located in Seattle at the time
of this writing. Therefore, it is not always realistic to expect to get a
response immediately in our Slack channel.

On both communication channels, there is a growing body of tribal knowledge
being accumulated among the channel participants. We are beginning to see
several non-F5 participants helping answer questions about our modules.

We fully encourage this to continue.

 4.5. Enable debug output

4.5. Enable debug output

Problem

You want to see more complete debugging when running playbooks

Solution

Set the environment variable ANSIBLE_DEBUG to 1 when you run the
ansible-playbook command.

	Change into the lab4.5 directory in the labs directory.

$ ANSIBLE_DEBUG=1 ansible-playbook -i inventory/hosts playbooks/site.yaml

Running this will output a lot more output than even the verbose output gives you. None of the debug output is what you would normally get. This playbook is a contrived example, but illustrates debug’s output.

This is normal output

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

PLAY [Labb 4.5] ***

TASK [Gathering Facts] **
ok: [localhost]

TASK [Run a task] ***
ok: [localhost]

TASK [Run a second task] **************************************
skipping: [localhost]

TASK [Run a third task] ***************************************
ok: [localhost] => {
 "fact1": "foo"
}

PLAY RECAP **
localhost : ok=3 changed=0 unreachable=0 failed=0

This is verbose output (truncated for readability)

$ ANSIBLE_DEBUG=1 ansible-playbook -i inventory/hosts playbooks/site.yaml
 88233 1512328569.77688: starting run
 88233 1512328569.87126: Added group all to inventory
 88233 1512328569.87134: Added group ungrouped to inventory
 88233 1512328569.87139: Group all now contains ungrouped
 88233 1512328569.87326: Loading InventoryModule 'host_list' from /Users/tru...
 88233 1512328569.87484: assigned :doc
 88233 1512328569.87490: assigned :plainexamples
 88233 1512328569.87513: Loading InventoryModule 'script' from /Users/trupp/...
 88233 1512328569.89141: assigned :doc
 88233 1512328569.89160: Loaded config def from plugin (inventory/script)
 88233 1512328569.89193: Loading InventoryModule 'yaml' from /Users/trupp/sr...
 88233 1512328569.89762: assigned :doc
 88233 1512328569.89769: assigned :plainexamples
 88233 1512328569.89780: Loaded config def from plugin (inventory/yaml)
 88233 1512328569.89823: Loading InventoryModule 'ini' from /Users/trupp/src...
 88233 1512328569.90388: assigned :doc
 88233 1512328569.90394: assigned :plainexamples
 88233 1512328569.90425: Loading InventoryModule 'auto' from /Users/trupp/sr...
 88233 1512328569.90644: assigned :doc
 88233 1512328569.90649: assigned :plainexamples
 88233 1512328569.90696: Examining possible inventory source: /Users/trupp/s...
 88233 1512328569.90705: Attempting to use plugin host_list (/Users/trupp/sr...
 88233 1512328569.90713: /Users/trupp/src/f5-gsts-labs-ansible-cookbook/docs...
 88233 1512328569.90717: Attempting to use plugin script (/Users/trupp/src/e...
 88233 1512328569.90729: /Users/trupp/src/f5-gsts-labs-ansible-cookbook/docs...
 88233 1512328569.90734: Attempting to use plugin yaml (/Users/trupp/src/env...
 88233 1512328569.90804: Loading data from /Users/trupp/src/f5-gsts-labs-ans...
 88233 1512328569.90854: /Users/trupp/src/f5-gsts-labs-ansible-cookbook/docs...
 88233 1512328569.90860: Attempting to use plugin ini (/Users/trupp/src/envs...
 88233 1512328569.90993: set inventory_file for localhost
 88233 1512328569.91004: set inventory_dir for localhost
 88233 1512328569.91009: Added host localhost to inventory
 88233 1512328569.91015: Added host localhost to group ungrouped
 88233 1512328569.91020: Reconcile groups and hosts in inventory.
 88233 1512328569.91025: Group all now contains localhost
 88233 1512328569.91166: Loading CacheModule 'memory' from /Users/trupp/src/...
 88233 1512328569.93963: Loading data from /Users/trupp/src/f5-gsts-labs-ans...
 88233 1512328570.14469: Loading CallbackModule 'default' from /Users/trupp/...
 88233 1512328570.14924: assigned :doc
 88233 1512328570.14989: Loading CallbackModule 'actionable' from /Users/tru...
 88233 1512328570.15173: assigned :doc
 88233 1512328570.15194: Loading CallbackModule 'context_demo' from /Users/t...
 88233 1512328570.15406: assigned :doc
 88233 1512328570.15427: Loading CallbackModule 'debug' from /Users/trupp/sr...
 88233 1512328570.15599: assigned :doc
 88233 1512328570.15609: Loading CallbackModule 'default' from /Users/trupp/...
 88233 1512328570.15980: assigned :doc
 88233 1512328570.16029: Loading CallbackModule 'dense' from /Users/trupp/sr...
 88233 1512328570.16451: assigned :doc
 88233 1512328570.20526: Loading CallbackModule 'foreman' from /Users/trupp/...
 88233 1512328570.21163: assigned :doc
 88233 1512328570.21185: Loaded config def from plugin (callback/foreman)
 88233 1512328570.21223: Loading CallbackModule 'full_skip' from /Users/trup...
 88233 1512328570.21458: assigned :doc
 88233 1512328570.22018: Loading CallbackModule 'hipchat' from /Users/trupp/...
 88233 1512328570.22699: assigned :doc
 88233 1512328570.22725: Loaded config def from plugin (callback/hipchat)
 88233 1512328570.22780: Loading CallbackModule 'jabber' from /Users/trupp/s...
 88233 1512328570.23387: assigned :doc
 88233 1512328570.23440: Loaded config def from plugin (callback/jabber)
 88233 1512328570.23524: Loading CallbackModule 'json' from /Users/trupp/src...
 88233 1512328570.23921: assigned :doc
 88233 1512328570.24611: Loading CallbackModule 'junit' from /Users/trupp/sr...
 88233 1512328570.25312: assigned :doc
 88233 1512328570.25339: Loaded config def from plugin (callback/junit)
 88233 1512328570.25366: Loading CallbackModule 'log_plays' from /Users/trup...
 88233 1512328570.25624: assigned :doc
 88233 1512328570.25681: Loading CallbackModule 'logentries' from /Users/tru...
 88233 1512328570.27404: assigned :doc
 88233 1512328570.27414: assigned :plainexamples
 88233 1512328570.27440: Loaded config def from plugin (callback/logentries)
 88233 1512328570.27493: Loading CallbackModule 'logstash' from /Users/trupp...
 88233 1512328570.28007: assigned :doc
 88233 1512328570.28025: Loaded config def from plugin (callback/logstash)
 88233 1512328570.28143: Loading CallbackModule 'mail' from /Users/trupp/src...
 88233 1512328570.28534: assigned :doc
 88233 1512328570.28553: Loaded config def from plugin (callback/mail)
 88233 1512328570.28576: Loading CallbackModule 'minimal' from /Users/trupp/...
 88233 1512328570.28733: assigned :doc
 88233 1512328570.28762: Loading CallbackModule 'null' from /Users/trupp/src...
 88233 1512328570.28914: assigned :doc
 88233 1512328570.28943: Loading CallbackModule 'oneline' from /Users/trupp/...
 88233 1512328570.29117: assigned :doc
 88233 1512328570.29147: Loading CallbackModule 'osx_say' from /Users/trupp/...
 88233 1512328570.29348: assigned :doc
 88233 1512328570.29375: Loading CallbackModule 'profile_roles' from /Users/...
 88233 1512328570.29630: assigned :doc
 88233 1512328570.29702: Loading CallbackModule 'profile_tasks' from /Users/...
 88233 1512328570.30465: assigned :doc
 88233 1512328570.30476: assigned :plainexamples
 88233 1512328570.30505: Loaded config def from plugin (callback/profile_tasks)
 88233 1512328570.30542: Loading CallbackModule 'selective' from /Users/trup...
 88233 1512328570.31090: assigned :doc
 88233 1512328570.31097: assigned :plainexamples
 88233 1512328570.31118: Loaded config def from plugin (callback/selective)
 88233 1512328570.31139: Loading CallbackModule 'skippy' from /Users/trupp/s...
 88233 1512328570.31305: assigned :doc
 88233 1512328570.31328: Loading CallbackModule 'slack' from /Users/trupp/sr...
 88233 1512328570.32250: assigned :doc
 88233 1512328570.32289: Loaded config def from plugin (callback/slack)
 88233 1512328570.32337: Loading CallbackModule 'stderr' from /Users/trupp/s...
 88233 1512328570.32782: assigned :doc
 88233 1512328570.33061: Loading CallbackModule 'syslog_json' from /Users/tr...
 88233 1512328570.34292: assigned :doc
 88233 1512328570.34341: Loaded config def from plugin (callback/syslog_json)
 88233 1512328570.34432: Loading CallbackModule 'timer' from /Users/trupp/sr...
 88233 1512328570.34699: assigned :doc
 88233 1512328570.34755: Loading CallbackModule 'tree' from /Users/trupp/src...
 88233 1512328570.35199: assigned :doc
 88233 1512328570.35319: Loading CallbackModule 'unixy' from /Users/trupp/sr...
 88233 1512328570.35797: assigned :doc
 88233 1512328570.35953: Loading CallbackModule 'yaml' from /Users/trupp/src...
 88233 1512328570.36363: assigned :doc
 88233 1512328570.36411: in VariableManager get_vars()
 88233 1512328570.37284: Loading FilterModule 'core' from /Users/trupp/src/e...
 88233 1512328570.39222: Loading FilterModule 'ipaddr' from /Users/trupp/src...
 88233 1512328570.39913: Loading FilterModule 'json_query' from /Users/trupp...
 88233 1512328570.40022: Loading FilterModule 'mathstuff' from /Users/trupp/...
 88233 1512328570.40233: Loading FilterModule 'network' from /Users/trupp/sr...
 88233 1512328570.40287: Loading FilterModule 'urlsplit' from /Users/trupp/s...
 88233 1512328570.40499: Loading TestModule 'core' from /Users/trupp/src/env...
 88233 1512328570.40560: Loading TestModule 'files' from /Users/trupp/src/en...
 88233 1512328570.40642: Loading TestModule 'mathstuff' from /Users/trupp/sr...
 88233 1512328570.41209: done with get_vars()
 88233 1512328570.41286: in VariableManager get_vars()
 88233 1512328570.41373: Loading FilterModule 'core' from /Users/trupp/src/e...
 88233 1512328570.41384: Loading FilterModule 'ipaddr' from /Users/trupp/src...
 88233 1512328570.41394: Loading FilterModule 'json_query' from /Users/trupp...
 88233 1512328570.41402: Loading FilterModule 'mathstuff' from /Users/trupp/...
 88233 1512328570.41410: Loading FilterModule 'network' from /Users/trupp/sr...
 88233 1512328570.41418: Loading FilterModule 'urlsplit' from /Users/trupp/s...
 88233 1512328570.41479: Loading TestModule 'core' from /Users/trupp/src/env...
 88233 1512328570.41487: Loading TestModule 'files' from /Users/trupp/src/en...
 88233 1512328570.41500: Loading TestModule 'mathstuff' from /Users/trupp/sr...
 88233 1512328570.41917: done with get_vars()

PLAY [Labb 4.5] **
 88233 1512328570.43407: Loading StrategyModule 'linear' from /Users/trupp/s...
 88233 1512328570.43460: getting the remaining hosts for this loop
 88233 1512328570.43472: done getting the remaining hosts for this loop
 88233 1512328570.43483: building list of next tasks for hosts
 88233 1512328570.43491: getting the next task for host localhost
 88233 1512328570.43504: done getting next task for host localhost
 88233 1512328570.43514: ^ task is: TASK: Gathering Facts
 88233 1512328570.43522: ^ state is: HOST STATE: block=0, task=0, rescue=0,...
 88233 1512328570.43529: done building task lists
 88233 1512328570.43535: counting tasks in each state of execution
 88233 1512328570.43541: done counting tasks in each state of execution:
 num_setups: 1
 num_tasks: 0
 num_rescue: 0
 num_always: 0
 88233 1512328570.43545: advancing hosts in ITERATING_SETUP
 88233 1512328570.43549: starting to advance hosts
 88233 1512328570.43553: getting the next task for host localhost
 88233 1512328570.43558: done getting next task for host localhost
 88233 1512328570.43562: ^ task is: TASK: Gathering Facts
 88233 1512328570.43566: ^ state is: HOST STATE: block=0, task=0, rescue=0,...
 88233 1512328570.43571: done advancing hosts to next task
 88233 1512328570.43578: getting variables
 88233 1512328570.43583: in VariableManager get_vars()
 88233 1512328570.43621: Loading FilterModule 'core' from /Users/trupp/src/e...
 88233 1512328570.43630: Loading FilterModule 'ipaddr' from /Users/trupp/src...
 88233 1512328570.43641: Loading FilterModule 'json_query' from /Users/trupp...
 88233 1512328570.43650: Loading FilterModule 'mathstuff' from /Users/trupp/...
 88233 1512328570.43658: Loading FilterModule 'network' from /Users/trupp/sr...
 88233 1512328570.43667: Loading FilterModule 'urlsplit' from /Users/trupp/s...
 88233 1512328570.43696: Loading TestModule 'core' from /Users/trupp/src/env...
 88233 1512328570.43708: Loading TestModule 'files' from /Users/trupp/src/en...
 88233 1512328570.43716: Loading TestModule 'mathstuff' from /Users/trupp/sr...
 88233 1512328570.43867: Calling all_inventory to load vars for localhost
 88233 1512328570.43888: Calling groups_inventory to load vars for localhost
 88233 1512328570.43901: Calling all_plugins_inventory to load vars for localhost
 88233 1512328570.44240: Loading VarsModule 'host_group_vars' from /Users/tr...
 88233 1512328570.44275: Calling all_plugins_play to load vars for localhost
 88233 1512328570.44303: Loading VarsModule 'host_group_vars' from /Users/tr...
 88233 1512328570.44325: Calling groups_plugins_inventory to load vars for localhost
 88233 1512328570.44354: Loading VarsModule 'host_group_vars' from /Users/tr...
 88233 1512328570.44383: Calling groups_plugins_play to load vars for localhost
 88233 1512328570.46982: Loading VarsModule 'host_group_vars' from /Users/tr...
 88233 1512328570.47033: Loading VarsModule 'host_group_vars' from /Users/tr...
 88233 1512328570.47063: Loading VarsModule 'host_group_vars' from /Users/tr...
 88233 1512328570.47104: done with get_vars()
 88233 1512328570.47132: done getting variables
 88233 1512328570.47143: sending task start callback, copying the task so we...
 88233 1512328570.47154: done copying, going to template now
 88233 1512328570.47164: done templating
 88233 1512328570.47171: here goes the callback...

TASK [Gathering Facts] ***
 88233 1512328570.47183: sending task start callback
 88233 1512328570.47190: entering _queue_task() for localhost/setup
 88233 1512328570.47339: worker is 1 (out of 1 available)
 88233 1512328570.47410: exiting _queue_task() for localhost/setup
 88233 1512328570.47435: done queuing things up, now waiting for results queue to drain
 88233 1512328570.47451: waiting for pending results...
 88247 1512328570.47777: running TaskExecutor() for localhost/TASK: Gathering Facts
 88247 1512328570.47883: in run() - task 8c85904d-91d6-70e5-2197-000000000011
 88247 1512328570.48303: calling self._execute()
 88247 1512328570.49597: Loading Connection 'local' from /Users/trupp/src/env...
 88247 1512328570.49687: Loading ShellModule 'csh' from /Users/trupp/src/envs...
 88247 1512328570.49787: Loading ShellModule 'fish' from /Users/trupp/src/env...
 88247 1512328570.49806: Loading ShellModule 'powershell' from /Users/trupp/s...
 88247 1512328570.49822: Loading ShellModule 'sh' from /Users/trupp/src/envs/...
 88247 1512328570.49917: Loading ShellModule 'sh' from /Users/trupp/src/envs/...
 88247 1512328570.50658: assigned :doc
 88247 1512328570.50814: Loading ActionModule 'normal' from /Users/trupp/src/...
 88247 1512328570.50831: starting attempt loop
 88247 1512328570.50838: running the handler
 88247 1512328570.50930: ANSIBALLZ: Using lock for setup
 88247 1512328570.50939: ANSIBALLZ: Acquiring lock
 88247 1512328570.50950: ANSIBALLZ: Lock acquired: 4534992464
 88247 1512328570.50962: ANSIBALLZ: Creating module
 88247 1512328570.85142: ANSIBALLZ: Writing module
 88247 1512328570.85214: ANSIBALLZ: Renaming module
 88247 1512328570.85245: ANSIBALLZ: Done creating module
 88247 1512328570.85407: _low_level_execute_command(): starting
 88247 1512328570.85415: _low_level_execute_command(): executing: /bin/sh -c 'echo ~ && sleep 0'
 88247 1512328570.85429: in local.exec_command()
 88247 1512328570.85435: opening command with Popen()
 88247 1512328570.85823: done running command with Popen()
 88247 1512328570.85842: getting output with communicate()
 88247 1512328570.86905: done communicating
 88247 1512328570.86927: done with local.exec_command()
 88247 1512328570.86946: _low_level_execute_command() done: rc=0, stdout=/Users/trupp
, stderr=
 88247 1512328570.86958: _low_level_execute_command(): starting
 88247 1512328570.86967: _low_level_execute_command(): executing: /bin/sh -c '(...
 88247 1512328570.86979: in local.exec_command()
 88247 1512328570.86985: opening command with Popen()
 88247 1512328570.87401: done running command with Popen()
 88247 1512328570.87426: getting output with communicate()
 88247 1512328570.89015: done communicating
 88247 1512328570.89025: done with local.exec_command()
 88247 1512328570.89042: _low_level_execute_command() done: rc=0, stdout=ansibl...
, stderr=
 88247 1512328570.89055: transferring module to remote /Users/trupp/.ansible/tm...
 88247 1512328570.89245: done transferring module to remote
 88247 1512328570.89266: _low_level_execute_command(): starting
 88247 1512328570.89273: _low_level_execute_command(): executing: /bin/sh -c 'c...
 88247 1512328570.89283: in local.exec_command()
 88247 1512328570.89288: opening command with Popen()
 88247 1512328570.89634: done running command with Popen()
 88247 1512328570.89665: getting output with communicate()
 88247 1512328570.91161: done communicating
 88247 1512328570.91171: done with local.exec_command()
 88247 1512328570.91192: _low_level_execute_command() done: rc=0, stdout=, stderr=
 88247 1512328570.91200: _low_level_execute_command(): starting
 88247 1512328570.91211: _low_level_execute_command(): executing: /bin/sh -c '...
 88247 1512328570.91223: in local.exec_command()
 88247 1512328570.91229: opening command with Popen()
 88247 1512328570.91581: done running command with Popen()
 88247 1512328570.91614: getting output with communicate()
 88247 1512328571.28618: done communicating
 88247 1512328571.28630: done with local.exec_command()
 88247 1512328571.28655: _low_level_execute_command() done: rc=0, stdout=
{"invocation": {"module_args": {"filter": "*", "gather_subset": ["all"], "fact...
, stderr=
 88247 1512328571.29273: done with _execute_module (setup, {'_ansible_version':...
 88247 1512328571.29291: handler run complete
 88247 1512328571.34550: attempt loop complete, returning result
 88247 1512328571.34576: _execute() done
 88247 1512328571.34583: dumping result to json
 88247 1512328571.34671: done dumping result, returning
 88247 1512328571.34683: done running TaskExecutor() for localhost/TASK: Gather...
 88247 1512328571.34699: sending task result for task 8c85904d-91d6-70e5-2197-0...
 88247 1512328571.34737: done sending task result for task 8c85904d-91d6-70e5-2...
 88247 1512328571.35092: WORKER PROCESS EXITING
ok: [localhost]
 88233 1512328571.36570: no more pending results, returning what we have
 88233 1512328571.36579: results queue empty
 88233 1512328571.36583: checking for any_errors_fatal
 88233 1512328571.36588: done checking for any_errors_fatal
 88233 1512328571.36592: checking for max_fail_percentage
 88233 1512328571.36596: done checking for max_fail_percentage
 88233 1512328571.36600: checking to see if all hosts have failed and the runn...
 88233 1512328571.36604: done checking to see if all hosts have failed
 88233 1512328571.36608: getting the remaining hosts for this loop
 88233 1512328571.36616: done getting the remaining hosts for this loop
 88233 1512328571.36626: building list of next tasks for hosts
 88233 1512328571.36631: getting the next task for host localhost
 88233 1512328571.36638: done getting next task for host localhost
 88233 1512328571.36644: ^ task is: TASK: meta (flush_handlers)
 88233 1512328571.37533: ^ state is: HOST STATE: block=1, task=1, rescue=0, alw...
 88233 1512328571.37544: done building task lists
 88233 1512328571.37549: counting tasks in each state of execution
 88233 1512328571.37555: done counting tasks in each state of execution:
 num_setups: 0
 num_tasks: 1
 num_rescue: 0
 num_always: 0
 88233 1512328571.37567: advancing hosts in ITERATING_TASKS
 88233 1512328571.37572: starting to advance hosts
 88233 1512328571.37576: getting the next task for host localhost
 88233 1512328571.37583: done getting next task for host localhost
 88233 1512328571.37589: ^ task is: TASK: meta (flush_handlers)
 88233 1512328571.37594: ^ state is: HOST STATE: block=1, task=1, rescue=0, alwa...
 88233 1512328571.37600: done advancing hosts to next task
 88233 1512328571.37619: done queuing things up, now waiting for results queue to...
 88233 1512328571.37626: results queue empty
 88233 1512328571.37631: checking for any_errors_fatal
 88233 1512328571.37636: done checking for any_errors_fatal
 88233 1512328571.37641: checking for max_fail_percentage
 88233 1512328571.37646: done checking for max_fail_percentage
 88233 1512328571.37650: checking to see if all hosts have failed and the running result is not ok
 88233 1512328571.37655: done checking to see if all hosts have failed
 88233 1512328571.37660: getting the remaining hosts for this loop
 88233 1512328571.37669: done getting the remaining hosts for this loop
 88233 1512328571.37680: building list of next tasks for hosts
 88233 1512328571.37686: getting the next task for host localhost
 88233 1512328571.37698: done getting next task for host localhost
 88233 1512328571.37705: ^ task is: TASK: Run a task
 88233 1512328571.37710: ^ state is: HOST STATE: block=2, task=1, rescue=0, always=0,...
 88233 1512328571.37715: done building task lists
 88233 1512328571.37720: counting tasks in each state of execution
 88233 1512328571.37725: done counting tasks in each state of execution:
 num_setups: 0
 num_tasks: 1
 num_rescue: 0
 num_always: 0
 88233 1512328571.37732: advancing hosts in ITERATING_TASKS
 88233 1512328571.37736: starting to advance hosts
 88233 1512328571.37741: getting the next task for host localhost
 88233 1512328571.37748: done getting next task for host localhost
 88233 1512328571.37754: ^ task is: TASK: Run a task
 88233 1512328571.37759: ^ state is: HOST STATE: block=2, task=1, rescue=0, always=0,...
 88233 1512328571.37764: done advancing hosts to next task
 88233 1512328571.37964: Loading ActionModule 'set_fact' from /Users/trupp/src/envs/f5...
 88233 1512328571.37977: getting variables
 88233 1512328571.37985: in VariableManager get_vars()
 88233 1512328571.38064: Loading FilterModule 'core' from /Users/trupp/src/envs/f5ansi...
 88233 1512328571.38074: Loading FilterModule 'ipaddr' from /Users/trupp/src/envs/f5an...
 88233 1512328571.38082: Loading FilterModule 'json_query' from /Users/trupp/src/envs/...
 88233 1512328571.38088: Loading FilterModule 'mathstuff' from /Users/trupp/src/envs/f...
 88233 1512328571.38095: Loading FilterModule 'network' from /Users/trupp/src/envs/f5a...
 88233 1512328571.38102: Loading FilterModule 'urlsplit' from /Users/trupp/src/envs/f5...
 88233 1512328571.38135: Loading TestModule 'core' from /Users/trupp/src/envs/f5ansibl...
 88233 1512328571.38142: Loading TestModule 'files' from /Users/trupp/src/envs/f5ansib...
 88233 1512328571.38148: Loading TestModule 'mathstuff' from /Users/trupp/src/envs/f5a...
 88233 1512328571.38235: Calling all_inventory to load vars for localhost
 88233 1512328571.38246: Calling groups_inventory to load vars for localhost
 88233 1512328571.38253: Calling all_plugins_inventory to load vars for localhost
 88233 1512328571.38277: Loading VarsModule 'host_group_vars' from /Users/trupp/src/en...
 88233 1512328571.38305: Calling all_plugins_play to load vars for localhost
 88233 1512328571.38323: Loading VarsModule 'host_group_vars' from /Users/trupp/src/en...
 88233 1512328571.38344: Calling groups_plugins_inventory to load vars for localhost
 88233 1512328571.38365: Loading VarsModule 'host_group_vars' from /Users/trupp/src/en...
 88233 1512328571.38386: Calling groups_plugins_play to load vars for localhost
 88233 1512328571.38405: Loading VarsModule 'host_group_vars' from /Users/trupp/src/en...
 88233 1512328571.38440: Loading VarsModule 'host_group_vars' from /Users/trupp/src/en...
 88233 1512328571.38472: Loading VarsModule 'host_group_vars' from /Users/trupp/src/en...
 88233 1512328571.39665: done with get_vars()
 88233 1512328571.39684: done getting variables
 88233 1512328571.39691: sending task start callback, copying the task so we can template
 88233 1512328571.39696: done copying, going to template now
 88233 1512328571.39702: done templating
 88233 1512328571.39706: here goes the callback...

TASK [Run a task] ***
 88233 1512328571.39718: sending task start callback
 88233 1512328571.39723: entering _queue_task() for localhost/set_fact
 88233 1512328571.39728: Creating lock for set_fact
 88233 1512328571.39884: worker is 1 (out of 1 available)
 88233 1512328571.39947: exiting _queue_task() for localhost/set_fact
 88233 1512328571.39969: done queuing things up, now waiting for results queue to drain
 88233 1512328571.39976: waiting for pending results...
 88286 1512328571.40364: running TaskExecutor() for localhost/TASK: Run a task
 88286 1512328571.40509: in run() - task 8c85904d-91d6-70e5-2197-000000000008
 88286 1512328571.40615: calling self._execute()
 88286 1512328571.41878: Loading Connection 'local' from /Users/trupp/src/envs/f5ansible/...
 88286 1512328571.41995: Loading ShellModule 'csh' from /Users/trupp/src/envs/f5ansible/l...
 88286 1512328571.42067: Loading ShellModule 'fish' from /Users/trupp/src/envs/f5ansible/...
 88286 1512328571.42078: Loading ShellModule 'powershell' from /Users/trupp/src/envs/f5an...
 88286 1512328571.42086: Loading ShellModule 'sh' from /Users/trupp/src/envs/f5ansible/li...
 88286 1512328571.42133: Loading ShellModule 'sh' from /Users/trupp/src/envs/f5ansible/li...
 88286 1512328571.42792: assigned :doc
 88286 1512328571.42850: Loading ActionModule 'set_fact' from /Users/trupp/src/envs/f5ans...
 88286 1512328571.42863: starting attempt loop
 88286 1512328571.42872: running the handler
 88286 1512328571.42889: handler run complete
 88286 1512328571.43127: attempt loop complete, returning result
 88286 1512328571.43133: _execute() done
 88286 1512328571.43137: dumping result to json
 88286 1512328571.43142: done dumping result, returning
 88286 1512328571.43148: done running TaskExecutor() for localhost/TASK: Run a task [8c85...
 88286 1512328571.43160: sending task result for task 8c85904d-91d6-70e5-2197-000000000008
 88286 1512328571.43188: done sending task result for task 8c85904d-91d6-70e5-2197-000000000008
 88286 1512328571.43216: WORKER PROCESS EXITING
ok: [localhost]
 88233 1512328571.43625: no more pending results, returning what we have
 88233 1512328571.43638: results queue empty
 88233 1512328571.43643: checking for any_errors_fatal
 88233 1512328571.43650: done checking for any_errors_fatal
 88233 1512328571.43655: checking for max_fail_percentage
 88233 1512328571.43660: done checking for max_fail_percentage
 88233 1512328571.43665: checking to see if all hosts have failed and the running result is not ok
 88233 1512328571.43669: done checking to see if all hosts have failed
 88233 1512328571.43674: getting the remaining hosts for this loop
 88233 1512328571.43685: done getting the remaining hosts for this loop
 88233 1512328571.43699: building list of next tasks for hosts
 88233 1512328571.43706: getting the next task for host localhost
 88233 1512328571.43717: done getting next task for host localhost
 88233 1512328571.43724: ^ task is: TASK: Run a second task
 88233 1512328571.43731: ^ state is: HOST STATE: block=2, task=2, rescue=0, always=0, ru...
 88233 1512328571.43742: done building task lists
 88233 1512328571.43747: counting tasks in each state of execution
 88233 1512328571.43753: done counting tasks in each state of execution:
 num_setups: 0
 num_tasks: 1
 num_rescue: 0
 num_always: 0
 88233 1512328571.43771: advancing hosts in ITERATING_TASKS
 88233 1512328571.43776: starting to advance hosts
 88233 1512328571.43781: getting the next task for host localhost
 88233 1512328571.43788: done getting next task for host localhost
 88233 1512328571.43794: ^ task is: TASK: Run a second task
 88233 1512328571.43800: ^ state is: HOST STATE: block=2, task=2, rescue=0, always=0, ru...
 88233 1512328571.43805: done advancing hosts to next task
 88233 1512328571.44173: Loading ActionModule 'debug' from /Users/trupp/src/envs/f5ansibl...
 88233 1512328571.44187: getting variables
 88233 1512328571.44193: in VariableManager get_vars()
 88233 1512328571.44265: Loading FilterModule 'core' from /Users/trupp/src/envs/f5ansible...
 88233 1512328571.44279: Loading FilterModule 'ipaddr' from /Users/trupp/src/envs/f5ansib...
 88233 1512328571.44288: Loading FilterModule 'json_query' from /Users/trupp/src/envs/f5a...
 88233 1512328571.44297: Loading FilterModule 'mathstuff' from /Users/trupp/src/envs/f5an...
 88233 1512328571.44305: Loading FilterModule 'network' from /Users/trupp/src/envs/f5ansi...
 88233 1512328571.44313: Loading FilterModule 'urlsplit' from /Users/trupp/src/envs/f5ans...
 88233 1512328571.44355: Loading TestModule 'core' from /Users/trupp/src/envs/f5ansible/l...
 88233 1512328571.44364: Loading TestModule 'files' from /Users/trupp/src/envs/f5ansible/...
 88233 1512328571.44371: Loading TestModule 'mathstuff' from /Users/trupp/src/envs/f5ansi...
 88233 1512328571.44496: Calling all_inventory to load vars for localhost
 88233 1512328571.44510: Calling groups_inventory to load vars for localhost
 88233 1512328571.44519: Calling all_plugins_inventory to load vars for localhost
 88233 1512328571.44550: Loading VarsModule 'host_group_vars' from /Users/trupp/src/envs/...
 88233 1512328571.44577: Calling all_plugins_play to load vars for localhost
 88233 1512328571.44596: Loading VarsModule 'host_group_vars' from /Users/trupp/src/envs/...
 88233 1512328571.44618: Calling groups_plugins_inventory to load vars for localhost
 88233 1512328571.44639: Loading VarsModule 'host_group_vars' from /Users/trupp/src/envs/...
 88233 1512328571.44660: Calling groups_plugins_play to load vars for localhost
 88233 1512328571.44679: Loading VarsModule 'host_group_vars' from /Users/trupp/src/envs/...
 88233 1512328571.44716: Loading VarsModule 'host_group_vars' from /Users/trupp/src/envs/...
 88233 1512328571.44748: Loading VarsModule 'host_group_vars' from /Users/trupp/src/envs/...
 88233 1512328571.46020: done with get_vars()
 88233 1512328571.46053: done getting variables
 88233 1512328571.46063: sending task start callback, copying the task so we can template...
 88233 1512328571.46068: done copying, going to template now
 88233 1512328571.46075: done templating
 88233 1512328571.46080: here goes the callback...

TASK [Run a second task] **
 88233 1512328571.46094: sending task start callback
 88233 1512328571.46101: entering _queue_task() for localhost/debug
 88233 1512328571.46107: Creating lock for debug
 88233 1512328571.46271: worker is 1 (out of 1 available)
 88233 1512328571.46329: exiting _queue_task() for localhost/debug
 88233 1512328571.46354: done queuing things up, now waiting for results queue to drain
 88233 1512328571.46360: waiting for pending results...
 88287 1512328571.46821: running TaskExecutor() for localhost/TASK: Run a second task
 88287 1512328571.46936: in run() - task 8c85904d-91d6-70e5-2197-00000000000a
 88287 1512328571.47046: calling self._execute()
 88287 1512328571.47350: Loading FilterModule 'core' from /Users/trupp/src/envs/f5ansible...
 88287 1512328571.47365: Loading FilterModule 'ipaddr' from /Users/trupp/src/envs/f5ansib...
 88287 1512328571.47375: Loading FilterModule 'json_query' from /Users/trupp/src/envs/f5a...
 88287 1512328571.47383: Loading FilterModule 'mathstuff' from /Users/trupp/src/envs/f5an...
 88287 1512328571.47391: Loading FilterModule 'network' from /Users/trupp/src/envs/f5ansi...
 88287 1512328571.47399: Loading FilterModule 'urlsplit' from /Users/trupp/src/envs/f5ans...
 88287 1512328571.47735: Loading TestModule 'core' from /Users/trupp/src/envs/f5ansible/l...
 88287 1512328571.47745: Loading TestModule 'files' from /Users/trupp/src/envs/f5ansible/...
 88287 1512328571.47753: Loading TestModule 'mathstuff' from /Users/trupp/src/envs/f5ansi...
 88287 1512328571.48550: when evaluation is False, skipping this task
 88287 1512328571.48563: _execute() done
 88287 1512328571.48571: dumping result to json
 88287 1512328571.48580: done dumping result, returning
 88287 1512328571.48588: done running TaskExecutor() for localhost/TASK: Run a second tas...
 88287 1512328571.48607: sending task result for task 8c85904d-91d6-70e5-2197-00000000000a
 88287 1512328571.48641: done sending task result for task 8c85904d-91d6-70e5-2197-00000000000a
 88287 1512328571.48649: WORKER PROCESS EXITING
skipping: [localhost]
 88233 1512328571.49095: no more pending results, returning what we have
 88233 1512328571.49106: results queue empty
 88233 1512328571.49111: checking for any_errors_fatal
 88233 1512328571.49131: done checking for any_errors_fatal
 88233 1512328571.49140: checking for max_fail_percentage
 88233 1512328571.49146: done checking for max_fail_percentage
 88233 1512328571.49151: checking to see if all hosts have failed and the running result is not ok
 88233 1512328571.49157: done checking to see if all hosts have failed
 88233 1512328571.49162: getting the remaining hosts for this loop
 88233 1512328571.49190: done getting the remaining hosts for this loop
 88233 1512328571.49200: building list of next tasks for hosts
 88233 1512328571.49208: getting the next task for host localhost
 88233 1512328571.49220: done getting next task for host localhost
 88233 1512328571.49228: ^ task is: TASK: Run a third task
 88233 1512328571.49239: ^ state is: HOST STATE: block=2, task=3, rescue=0, always=0, ru...
 88233 1512328571.49249: done building task lists
 88233 1512328571.49254: counting tasks in each state of execution
 88233 1512328571.49260: done counting tasks in each state of execution:
 num_setups: 0
 num_tasks: 1
 num_rescue: 0
 num_always: 0
 88233 1512328571.49273: advancing hosts in ITERATING_TASKS
 88233 1512328571.49278: starting to advance hosts
 88233 1512328571.49283: getting the next task for host localhost
 88233 1512328571.49289: done getting next task for host localhost
 88233 1512328571.49295: ^ task is: TASK: Run a third task
 88233 1512328571.49302: ^ state is: HOST STATE: block=2, task=3, rescue=0, always=0, ru...
 88233 1512328571.49308: done advancing hosts to next task
 88233 1512328571.49899: Loading ActionModule 'debug' from /Users/trupp/src/envs/f5ansibl...
 88233 1512328571.49921: getting variables
 88233 1512328571.49930: in VariableManager get_vars()
 88233 1512328571.50084: Loading FilterModule 'core' from /Users/trupp/src/envs/f5ansible...
 88233 1512328571.50096: Loading FilterModule 'ipaddr' from /Users/trupp/src/envs/f5ansib...
 88233 1512328571.50104: Loading FilterModule 'json_query' from /Users/trupp/src/envs/f5a...
 88233 1512328571.50111: Loading FilterModule 'mathstuff' from /Users/trupp/src/envs/f5an...
 88233 1512328571.50118: Loading FilterModule 'network' from /Users/trupp/src/envs/f5ansi...
 88233 1512328571.50124: Loading FilterModule 'urlsplit' from /Users/trupp/src/envs/f5ans...
 88233 1512328571.50166: Loading TestModule 'core' from /Users/trupp/src/envs/f5ansible/l...
 88233 1512328571.50174: Loading TestModule 'files' from /Users/trupp/src/envs/f5ansible/...
 88233 1512328571.50181: Loading TestModule 'mathstuff' from /Users/trupp/src/envs/f5ansi...
 88233 1512328571.50273: Calling all_inventory to load vars for localhost
 88233 1512328571.50283: Calling groups_inventory to load vars for localhost
 88233 1512328571.50291: Calling all_plugins_inventory to load vars for localhost
 88233 1512328571.50321: Loading VarsModule 'host_group_vars' from /Users/trupp/src/envs/...
 88233 1512328571.50370: Calling all_plugins_play to load vars for localhost
 88233 1512328571.50407: Loading VarsModule 'host_group_vars' from /Users/trupp/src/envs/...
 88233 1512328571.50438: Calling groups_plugins_inventory to load vars for localhost
 88233 1512328571.50469: Loading VarsModule 'host_group_vars' from /Users/trupp/src/envs/...
 88233 1512328571.50494: Calling groups_plugins_play to load vars for localhost
 88233 1512328571.50516: Loading VarsModule 'host_group_vars' from /Users/trupp/src/envs/...
 88233 1512328571.50558: Loading VarsModule 'host_group_vars' from /Users/trupp/src/envs/...
 88233 1512328571.50594: Loading VarsModule 'host_group_vars' from /Users/trupp/src/envs/...
 88233 1512328571.51987: done with get_vars()
 88233 1512328571.52010: done getting variables
 88233 1512328571.52019: sending task start callback, copying the task so we can template...
 88233 1512328571.52025: done copying, going to template now
 88233 1512328571.52033: done templating
 88233 1512328571.52047: here goes the callback...

TASK [Run a third task] ***
 88233 1512328571.52066: sending task start callback
 88233 1512328571.52073: entering _queue_task() for localhost/debug
 88233 1512328571.52246: worker is 1 (out of 1 available)
 88233 1512328571.52320: exiting _queue_task() for localhost/debug
 88233 1512328571.52345: done queuing things up, now waiting for results queue to drain
 88233 1512328571.52351: waiting 88288 1512328571.52817: running TaskExecutor() for loca...
for pending results...
 88288 1512328571.53010: in run() - task 8c85904d-91d6-70e5-2197-00000000000c
 88288 1512328571.53117: calling self._execute()
 88288 1512328571.53492: Loading FilterModule 'core' from /Users/trupp/src/envs/f5ansible...
 88288 1512328571.53523: Loading FilterModule 'ipaddr' from /Users/trupp/src/envs/f5ansib...
 88288 1512328571.53539: Loading FilterModule 'json_query' from /Users/trupp/src/envs/f5a...
 88288 1512328571.53551: Loading FilterModule 'mathstuff' from /Users/trupp/src/envs/f5an...
 88288 1512328571.53562: Loading FilterModule 'network' from /Users/trupp/src/envs/f5ansi...
 88288 1512328571.53576: Loading FilterModule 'urlsplit' from /Users/trupp/src/envs/f5ans...
 88288 1512328571.53665: Loading TestModule 'core' from /Users/trupp/src/envs/f5ansible/l...
 88288 1512328571.53676: Loading TestModule 'files' from /Users/trupp/src/envs/f5ansible/...
 88288 1512328571.53683: Loading TestModule 'mathstuff' from /Users/trupp/src/envs/f5ansi...
 88288 1512328571.55223: Loading Connection 'local' from /Users/trupp/src/envs/f5ansible/...
 88288 1512328571.55376: Loading ShellModule 'csh' from /Users/trupp/src/envs/f5ansible/l...
 88288 1512328571.55476: Loading ShellModule 'fish' from /Users/trupp/src/envs/f5ansible/...
 88288 1512328571.55497: Loading ShellModule 'powershell' from /Users/trupp/src/envs/f5an...
 88288 1512328571.55509: Loading ShellModule 'sh' from /Users/trupp/src/envs/f5ansible/li...
 88288 1512328571.55560: Loading ShellModule 'sh' from /Users/trupp/src/envs/f5ansible/li...
 88288 1512328571.56124: assigned :doc
 88288 1512328571.56194: Loading ActionModule 'debug' from /Users/trupp/src/envs/f5ansibl...
 88288 1512328571.56211: starting attempt loop
 88288 1512328571.56218: running the handler
 88288 1512328571.56362: handler run complete
 88288 1512328571.56372: attempt loop complete, returning result
 88288 1512328571.56380: _execute() done
 88288 1512328571.56385: dumping result to json
 88288 1512328571.56392: done dumping result, returning
 88288 1512328571.56405: done running TaskExecutor() for localhost/TASK: Run a third task...
 88288 1512328571.56423: sending task result for task 8c85904d-91d6-70e5-2197-00000000000c
 88288 1512328571.56471: done sending task result for task 8c85904d-91d6-70e5-2197-00000000000c
 88288 1512328571.56505: WORKER PROCESS EXITING
ok: [localhost] => {
 "fact1": "foo"
}
 88233 1512328571.57041: no more pending results, returning what we have
 88233 1512328571.57072: results queue empty
 88233 1512328571.57086: checking for any_errors_fatal
 88233 1512328571.57113: done checking for any_errors_fatal
 88233 1512328571.57123: checking for max_fail_percentage
 88233 1512328571.57132: done checking for max_fail_percentage
 88233 1512328571.57138: checking to see if all hosts have failed and the running result is not ok
 88233 1512328571.57149: done checking to see if all hosts have failed
 88233 1512328571.57159: getting the remaining hosts for this loop
 88233 1512328571.57201: done getting the remaining hosts for this loop
 88233 1512328571.57223: building list of next tasks for hosts
 88233 1512328571.57235: getting the next task for host localhost
 88233 1512328571.57270: done getting next task for host localhost
 88233 1512328571.57284: ^ task is: TASK: meta (flush_handlers)
 88233 1512328571.57306: ^ state is: HOST STATE: block=3, task=1, rescue=0, always=0, ru...
 88233 1512328571.57320: done building task lists
 88233 1512328571.57326: counting tasks in each state of execution
 88233 1512328571.57335: done counting tasks in each state of execution:
 num_setups: 0
 num_tasks: 1
 num_rescue: 0
 num_always: 0
 88233 1512328571.57356: advancing hosts in ITERATING_TASKS
 88233 1512328571.57372: starting to advance hosts
 88233 1512328571.57378: getting the next task for host localhost
 88233 1512328571.57389: done getting next task for host localhost
 88233 1512328571.57396: ^ task is: TASK: meta (flush_handlers)
 88233 1512328571.57402: ^ state is: HOST STATE: block=3, task=1, rescue=0, always=0, run...
 88233 1512328571.57418: done advancing hosts to next task
 88233 1512328571.57485: done queuing things up, now waiting for results queue to drain
 88233 1512328571.57492: results queue empty
 88233 1512328571.57497: checking for any_errors_fatal
 88233 1512328571.57503: done checking for any_errors_fatal
 88233 1512328571.57507: checking for max_fail_percentage
 88233 1512328571.57512: done checking for max_fail_percentage
 88233 1512328571.57517: checking to see if all hosts have failed and the running result is not ok
 88233 1512328571.57521: done checking to see if all hosts have failed
 88233 1512328571.57526: getting the remaining hosts for this loop
 88233 1512328571.57532: done getting the remaining hosts for this loop
 88233 1512328571.57540: building list of next tasks for hosts
 88233 1512328571.57545: getting the next task for host localhost
 88233 1512328571.57552: done getting next task for host localhost
 88233 1512328571.57558: ^ task is: TASK: meta (flush_handlers)
 88233 1512328571.57563: ^ state is: HOST STATE: block=4, task=1, rescue=0, always=0, run_st...
 88233 1512328571.57569: done building task lists
 88233 1512328571.57573: counting tasks in each state of execution
 88233 1512328571.57578: done counting tasks in each state of execution:
 num_setups: 0
 num_tasks: 1
 num_rescue: 0
 num_always: 0
 88233 1512328571.57584: advancing hosts in ITERATING_TASKS
 88233 1512328571.57589: starting to advance hosts
 88233 1512328571.57594: getting the next task for host localhost
 88233 1512328571.57600: done getting next task for host localhost
 88233 1512328571.57606: ^ task is: TASK: meta (flush_handlers)
 88233 1512328571.57611: ^ state is: HOST STATE: block=4, task=1, rescue=0, always=0, run_st...
 88233 1512328571.57616: done advancing hosts to next task
 88233 1512328571.57626: done queuing things up, now waiting for results queue to drain
 88233 1512328571.57632: results queue empty
 88233 1512328571.57637: checking for any_errors_fatal
 88233 1512328571.57642: done checking for any_errors_fatal
 88233 1512328571.57646: checking for max_fail_percentage
 88233 1512328571.57651: done checking for max_fail_percentage
 88233 1512328571.57656: checking to see if all hosts have failed and the running result is not ok
 88233 1512328571.57660: done checking to see if all hosts have failed
 88233 1512328571.57665: getting the remaining hosts for this loop
 88233 1512328571.57671: done getting the remaining hosts for this loop
 88233 1512328571.57678: building list of next tasks for hosts
 88233 1512328571.57683: getting the next task for host localhost
 88233 1512328571.57689: done getting next task for host localhost
 88233 1512328571.57694: ^ task is: None
 88233 1512328571.57700: ^ state is: HOST STATE: block=5, task=0, rescue=0, always=0, run_st...
 88233 1512328571.57705: done building task lists
 88233 1512328571.57710: counting tasks in each state of execution
 88233 1512328571.57714: done counting tasks in each state of execution:
 num_setups: 0
 num_tasks: 0
 num_rescue: 0
 num_always: 0
 88233 1512328571.57720: all hosts are done, so returning None's for all hosts
 88233 1512328571.57725: done queuing things up, now waiting for results queue to drain
 88233 1512328571.57730: results queue empty
 88233 1512328571.57735: checking for any_errors_fatal
 88233 1512328571.57739: done checking for any_errors_fatal
 88233 1512328571.57744: checking for max_fail_percentage
 88233 1512328571.57749: done checking for max_fail_percentage
 88233 1512328571.57753: checking to see if all hosts have failed and the running result is not ok
 88233 1512328571.57758: done checking to see if all hosts have failed
 88233 1512328571.57764: getting the next task for host localhost
 88233 1512328571.57771: done getting next task for host localhost
 88233 1512328571.57776: ^ task is: None
 88233 1512328571.57781: ^ state is: HOST STATE: block=5, task=0, rescue=0, always=0, run_st...
 88233 1512328571.57787: running handlers

PLAY RECAP **
localhost : ok=3 changed=0 unreachable=0 failed=0

Discussion

Debug output is not very useful unless you are debugging a core problem with Ansible.
It is also useful, in some cases, when you need to debug a module.

The reason we are showing it to you here is because it may be requested of you when
you report problems to the F5 Ansible developers.

Debug output shows the detailed execution of the Ansible engine as it processes the
playbook and the modules.

 4.6. Dealing with “bigsuds/f5-sdk not found” errors

4.6. Dealing with “bigsuds/f5-sdk not found” errors

Problem

Your playbook is failing with an error about being “unable to find bigsuds/f5-sdk”,
but you’re SURE they are installed

Solution

There are three potential causes for this that we’ll cover. They are

	They’re not installed in the right spot

	You’re not using connection local

	You’re not using delegation

Wrong installation location

If you are using a virtualenv, or a system that does not have python found at
/usr/bin/python, you must set the python interpreter of that system for Ansible.

This might be /usr/bin/python3 or the path to the virtualenv python like
ansible_python_interpreter=/.virtualenvs/lab4.6/bin/python

See the discussion below for more information regarding this issue.

Not using connection local

You have not specified connection: local. Therefore, all remote hosts will be connected to over SSH. Nine times out of ten the “not found” error is being raised because Ansible is connecting to a remote BIG-IP and the F5 module dependencies are not installed on the BIG-IP

The F5 Ansible modules can not be installed on a BIG-IP

Use connection: local for the play, or, delegate_to: localhost
for each BIG-IP task

Not using delegation

See the solution above as the reason and solution are the same, only this time
you are missing delegate_to: localhost instead of connection: local

Discussion

In an earlier lab we had, we learned that Ansible considers all your hosts to be
remote. This includes when you running it in a virtualenv or use connection: local.

This “wrong installation location” problem rears its head primarily when you run
Ansible in a virtualenv.

As a general rule of thumb, don’t do that unless you know what you’re doing. If
you’re reading this lab, you probably don’t know what you’re doing.

To experience the error, we’ll use a contrived example with two virtualenvs; one
with the dependencies installed, one without. These labs can be found in the lab4.6
directory.

We have configured our hosts to reference two different python interpreters.
The broken host, references a python interpreter that is intended to mimic your
non-virtualenv remote system (I know its referencing a virtualenv, imagine with me here).

The working python interpreter is intended to mimic the virtualenv that you
have installed Ansible in.

Change into the working virtualenv.

$ workon lab4.6

When you are in the virtualenv and the following shows f5-sdk,

(lab4.6) $ pip freeze | grep f5-sdk
f5-sdk==3.0.5
$

It is irrelevant. It is what is in the remote system’s python installation that matters
because that is the python that is invoked by default when Ansible connects to a machine.

Let’s run the lab4.6/playbooks/site.yaml playbook now

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

It seems the playbook fails (output truncated)

TASK [Create a pool] **
An exception occurred during task execution. To see the full traceback, use -vvv. The error was: ImportError: No module named netaddr
fatal: [broken]: FAILED! => {"changed": false, "module_stderr": "Traceback (most recent call last):\n File \"/tmp/ansible__3fdUX/ans
 to retry, use: --limit @/root/f5-gsts-labs-ansible-cookbook/labs/lab4.6/playbooks/site.retry

To fix this, change the ansible_python_interpreter line in inventory/hosts
file to read

	ansible_python_interpreter=/.virtualenvs/lab4.6/bin/python

Let’s re-run the playbook now

$ ansible-playbook -i inventory/hosts playbooks/site.yaml

Take a moment to review the images below for a better understanding of what Ansible
is doing.

This is how Ansible normally works

[image: image1]

In the virtualenv situation above, what we had instead, is that the Ansible
client had the F5 SDK installed in one virtualenv, but the remote host used a different
virtualenv. Therefore, we had a similar situation as the picture above, but using
virtualenv instead

[image: image2]

As you can see, we have the F5 SDK installed in the venv we were using, but not in
the venv that the remote host was configured for.

The same is implied when you are only using a single venv and the remote host specifies
nothing. In that case, you will need the dependencies installed in the system python.

[image: image3]

 4.7. Dealing with “authorization failed” errors

4.7. Dealing with “authorization failed” errors

Problem

Your playbook is failing with an error about “F5 Authorization failed”

Solution

Either your password is wrong. But it isn’t! Yes…for the last time…it is.

Or,

Your remote authentication is configured (on BIG-IP) incorrectly.

Or,

The role of the user that you are using with the Ansible module is not Administrator
or an equivalent.

Ensure that your password is correct. There is a specific command that you should
ensure runs without error, it is

$ curl -k -u admin:admin https://10.1.1.4/mgmt/tm/sys | jq .

Replace admin:admin with your user, and password combination. If the
above command does not succeed, then it will not be possible for the F5 Ansible
module to succeed. On some other versions of BIG-IP it was not possible for this
to succeed.

A successful output will look like the following

[image: image1]

In addition to incorrect passwords, ensure that your remote authentication is correct.
You should see entries in /var/log/secure.

Finally, the only supported role for the F5 Ansible modules is Administrator. No module
is expected to work without this role being assigned to them.

Discussion

Authentication can be a gnarly beast to debug because there are so many possible
reasons it could not be working.

By far, the two most common reasons are

	People are not providing the right password

	Remote authentication is misconfigured on BIG-IP

Understandably, people will often tell you that “of course my password is correct”.
They will be wrong. 9 times out of 10, they will have either typed in the wrong
password, or targeted the wrong BIG-IP (the BIG-IPs having different passwords).

If this is not the case, then confirm that their remote authentication is configured
correctly. BIG-IP will log authentication successes to /var/log/secure. Therefore,
if there are no entries in that file when a user runs an Ansible playbook with a
remote auth user, that could be a problem.

The final thing that is often missed (with remote authentication in particular) is the
assignment of BIG-IP roles to the remote-auth role. TACACS is notorious for this.
Just because you have remote auth configured does not necessarily mean that all is well.
You must also ensure that the remote users are associated with the local Administrator
role.

Too often this is overlooked.

On later versions of BIG-IP, you can find the menu that needs to be configured in
System > Users > Remote Role Groups. See the image below.

[image: image2]

If these are not configured properly, then you’ll be dead in the water. Figure your
remote authentication out.

This is almost never an Ansible problem. 99.999% of the time it is a user problem.

 4.8. Dealing with unsupported versions

4.8. Dealing with unsupported versions

Problem

You’re not sure what version of BIG-IP is supported

Solution

The list of supported versions, at the time of this writing, is

	BIG-IP 12.0.0 (BIGIP-12.0.0.0.0.606)

	BIG-IP 12.1.0 (BIGIP-12.1.0.0.0.1434)

	BIG-IP 12.1.0-hf1 (BIGIP-12.1.0.1.0.1447-HF1)

	BIG-IP 12.1.0-hf2 (BIGIP-12.1.0.2.0.1468-HF2)

	BIG-IP 12.1.1 (BIGIP-12.1.1.0.0.184)

	BIG-IP 12.1.1-hf1 (BIGIP-12.1.1.1.0.196-HF1)

	BIG-IP 12.1.1-hf2 (BIGIP-12.1.1.2.0.204-HF2)

	BIG-IP 12.1.2 (BIGIP-12.1.2.0.0.249)

	BIG-IP 12.1.2-hf1 (BIGIP-12.1.2.1.0.264-HF1)

	BIG-IP 13.0.0 (BIGIP-13.0.0.0.0.1645)

	BIG-IP 13.0.0-hf1 (BIGIP-13.0.0.1.0.1668-HF1)

	BIG-IP 13.0.0-hf2 (BIGIP-13.0.0.2.0.1671-HF2)

If you are using an unsupported version, no F5 Ansible modules are expected to work
except bigip_command. You must also use SSH to connect to the device (as REST will
be unavailable on older platforms).

To use this, set the parameter transport: cli and authenticate as root for it to
work.

We have not written a deprecation policy for EOL’ing supported versions (in Ansible)
of F5 products.

Discussion

At this time we have a large, and growing, list of F5 products that we have tested
to work with Ansible. Eventually, this list will be pruned.

In all cases, our recommendation is to plan your upgrade path. No exceptions.

On legacy product (versions less than 12) we do not expect any of our modules to
work, so do not even try. The only module that may work is the bigip_command
module. However, on legacy versions, for it to work correctly,

	you must use the transport: cli

	you must set the user argument to a name that has the Administrator role.

If you do not do the above things, do not expect that any of your tmsh commands
will work. An example usage would be

- name: Run multiple commands as root over CLI
 bigip_command:
 commands:
 - tmsh create ltm virtual foo
 - tmsh create ltm pool bar
 server: lb.mydomain.com
 password: secret
 user: root
 validate_certs: no
 transport: cli
 delegate_to: localhost

 Index

Index

_images/lab4.2.3.png
def debug(command, zipped_mod, json_params):

The code here normally doesn't run. It's only used for debugging on the
remote machine.

The subcommands in this function make it easier to debug ansiballz
modules. Here's the basic steps:

Run ansible with the environment variable: ANSIBLE_KEEP_REMOTE_FILES=1 and -vvv
to save the module file remotely::
$ ANSIBLE_KEEP_REMOTE_FILES=1 ansible hostl -m ping -a 'data=october' -vvv

Part of the verbose output will tell you where on the remote machine the
module was written to::
fooal
<hostl> SSH: EXEC ssh -C —-q -o ControlMaster=auto -o ControlPersist=60s -o KbdInterac

HHEFHHEFEHFEHRTEHEHRIER

tiveAuthentication=no -o

PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey —-o Password

Authentication=no -o ConnectTimeout=10 -o

ControlPath=/home/badger/.ansible/cp/ansible-ssh-%h—%p-%r -tt rhel7 '/bin/sh -c '"'"'

LANG=en_US.UTF-8 LC_ALL=en_US.UTF-8

013.

ing

ing

LC_MESSAGES=en_US.UTF-8 /usr/bin/python /home/badger/.ansible/tmp/ansible-tmp-1461173
93-9076457629738/ping'""'" "’

[...]

#

Login to the remote machine and run the module file via from the previous

step with the explode subcommand to extract the module payload into

source files::

$ ssh hostl

$ /usr/bin/python /home/badger/.ansible/tmp/ansible-tmp-1461173013.93-9076457629738/p
explode

Module expanded into:

/home/badger/.ansible/tmp/ansible—tmp-1461173408.08-279692652635227/ansible

#

You can now edit the source files to instrument the code or experiment with

different parameter values. When you're ready to run the code you've modified

(instead of the code from the actual zipped module), use the execute subcommand like th

$ /usr/bin/python /home/badger/.ansible/tmp/ansible-tmp-1461173013.93-9076457629738/p

execute

Okay to use _ file__ here because we're running from a kept file

basedir = os.path.join(os.path.abspath(os.path.dirname(__file_)), 'debug_dir')
args_path = os.path.join(basedir, 'args')

script_path = os.path.join(basedir, 'ansible_module_apt.py"')

if command == 'explode':
transform the ZIPDATA into an exploded directory of code and then
print the path to the code. This is an easy way for people to look
at the code on the remote machine for debugging it in that
environment

_images/lab4.6.1.png
Ansible Remote

SSH

F5 SDK needed

_images/lab4.2.1.png
<10.1.1.6> PUT /tmp/tmp_0Qdcy TO /root/.ansible/tmp/ansible—tmp-1512367718.13-21522411002
<10.1.1.6> SSH: EXEC sftp -b - -C —o ControlWMaster=auto -o ControlPersist=60s —o KbdInter
publickey -o PasswordAuthentication=no -o ConnectTimeout=10 -o ControlPath=/root/.ansible
<10.1.1.6> (0, 'sftp> put /tmp/tmp_0Qdcy /root/.ansible/tmp/ansible-tmp-1512367718.13-215
<10.1.1.6> ESTABLISH SSH CONNECTION FOR USER: None
<10.1.1.6> SSH: EXEC ssh -C -o ControlMaster=auto -o ControlPersist=60s -o KbdInteractive
key —-o PasswordAuthentication=no -0 ConnectTimeout=10 -o ControlPath=/root/.ansible/cp/0¢€
15224110025969/ /root/.ansible/tmp/ansible-tmp-1512367718.13-215224110025969/apt.py && sl
<10.1.1.6> (0, '', '")
<10.1.1.6> ESTABLISH SSH CONNECTION FOR USER: None
<10.1.1.6> SSH: EXEC ssh -C -o ControlMaster=auto -o ControlPersist=60s -o KbdInteractive
key -o PasswordAuthentication=no -o ConnectTimeout=10 —o ControlPath=/iFo0t/Nansible/cp/a6
367718.13-215224110025969/apt.py & sleep 0'"'"'"
<10.1.1.6> (@, '\r\n{"invocation": {"module_args": {"force_apt_get": false, "autoclean":
state": "present", "autoremove'": false, "purge": false, "update_cache": true, "name": "re
install_recommends": null, "upgrade'": null, "force": false, "allow_unauthenticated": fals
d connection to 10.1.1.6 closed.\r\n')
ok: [server] => {
""cache_update_time": 1512367718,
"cache_updated": true,
"changed": false,
"invocation": {
"module_args": {
"allow_unauthenticated": false,
"autoclean": false,
"autoremove": false,

_images/lab4.2.2.png
import shutil
import zipfile
import tempfile
import subprocess

if sys.version_info < (3,):
bytes = str
PY3 = False
else:
unicode = str
PY3 = True
try:
Python-2.6+
from io import BytesIO as IOStream
except ImportError:
Python < 2.6
from StringI0 import StringI0 as I0Stream

rys9VKMhOLy3JzFHIzC3ILypRSK@0Sc1LiS9ILMNgigd T8 f62SITaMEGd+Pi8xNzU+HhNoLqy1KLizPw8oFI1Iz@TPSMY
AyWgaGJpSUZ+EUj QMa84MyknVUTBMy9Z T4k LAFBLAWQUAAAACAATMYRLNCXxazcAAABIAAAATAAAAGFuc21ibGUvbW9kd
Wx 1X3V@akWxzL19fawWspdFIfLnB5SyvKz1UoyE4vLcnMUcjMLcgvKIFI rShlzUuJLegsyeCKB1Px8bZIghowQZ34+LzE3N
T4eEQUAFBLAWQUAAAACAATMYRLe jKhxHAOAABf LgAAFQAAAGFUC2 1ibGY FbWOkdWx LX2FwdC5wec19+3fjtpXw7/orEPn
MITWRZHsmyaY-+UbuOx5P67MT]tT3Jdj lehpIgm7VEKnzY4+3X//27DwAESFCyJ2m7ajOWS0Di4ul iPvHY+WK3KvLdaZLu
rh/L2yzt7YjRy5GYZfMKvTkQVbkYfYtPevAinA3Eq739VOPxdpk95F IVSVHU3RGE+T 1Py LKmYvoofozL81Y+1J+T5TKIV
4X4bsVP/n2hK41n2eqPUOv7uJBzkaXisVqIVTav11I81JAuZHkr fkrm8VI8V9zd@5e4FAs5z/I4nWd/ IbNynOU3AAGA/X
D6QfwgU5 IDgbNgukxm4 10yk2khxf3r8d6XIiykFEfvz/5ycvgDyHIxW5brdmB39+HhYXyTVghpd8k1it2b9XIEtchlp3L
Q6y3ybCWiaFGVVS6iSCSrdZaXIp4W2RL6E/HvoZgn9@mRZ01Q rPMkLaFCOivhdy+KV rkMZ8u4KKD6RISPa9n roQ5PLO6+

_images/lab4.7.1.png
(fSansible) SEA-ML-00028116:labs trupp$ curl —k —u admin:admin https://localhost:10443/mgnt/tn/sys | jq .
% Total % Received % Xferd Average Speed Time ~Time Time Current

Dload Upload Total Spent Left Speed
100 3409 100 3409 © 0 56110 0 —:

syscollectionstate
‘https://localhost/mgmt/tn/sysTver=12.

_images/lab4.7.2.png
ONLINE (ACTIVE)
Standalone

Partion List Authentication | Remote Role Groups

No records to display.

Delet

-
B
S
o

High Availability
ol

oo

e

-

Crypto Offloading User List
Logs
Support

_images/lab4.6.2.png
Ansible Controller

venvi

Ansible
F5 SDK

connection: loca
delegate_to: localhost

venv2

F5 SDK
needed

_images/lab4.6.3.png
Ansible Controller

venvi

Ansible
F5 SDK

connection: local
delegate_to: localhost

_images/requirements-header.png
bigip_selfip - Manage Self-IPs on a BIG-IP system

New in version 2.2.

« Synopsis

» Requirements (on host that executes module)

« Options
« Examples

« Return Values

 Notes
o Status

Synopsis

« Manage Self-IPs on a BIG-IP system

Requirements (on host that executes module)

* netaddr
» f5-sdk
Options
parameter | required default choices comment
address no The IP addresses for the new self IP. This value is

themselves cannot be changed after they are cre

allow_service

no

Configure port lockdown for the Self IP. By defau
This can be changed to allow TCP and UDP ports

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 F5 GSTS Ansible Cookbook Labs - Index

 		
 BIG-IP Basics (optional)

 		
 What is BIG-IP

 		
 BIG-IP Basic Nomenclature

 		
 F5 DevCentral BIG-IP Basics Articles

 		
 Using F5 in Various Environments

 		
 HA Proxy to BIG-IP Quick Start

 		
 NGINX to BIG-IP Quick Start

 		
 Getting Started

 		
 Lab Topology

 		
 Lab Components

 		
 Lab Environments

 		
 Class - Ansible Cookbook

 		
 Module – Installation and configuration of Ansible

 		
 Installing Ansible

 		
 Installing module dependencies

 		
 Expected File Layout

 		
 Installing unstable modules

 		
 Tweaking local ansible.cfg

 		
 Using static inventory

 		
 Installing software with apt

 		
 Writing general files to a remote device

 		
 Templating a file to a remote device

 		
 Module – Basic BIG-IP administration with Ansible

 		
 Creating a pool on BIG-IP

 		
 Writing once, re-using many times

 		
 Creating a physical node

 		
 Adding nodes to a pool

 		
 Creating a virtual server on BIG-IP

 		
 Installing an iApp template on BIG-IP

 		
 Creating an HTTP service from the HTTP iApp

 		
 Provisioning ASM

 		
 Applying an ASM policy

 		
 Creating an LTM policy with rules

 		
 Creating a new partition

 		
 Saving your configuration

 		
 Waiting for your device to (re)boot

 		
 Changing the root password

 		
 Module – Slightly more advanced Ansible usage

 		
 Prompting for user input

 		
 Keeping secrets secret

 		
 Local connection versus delegation

 		
 Starting the playbook at a specific task

 		
 Stepping through a playbook

 		
 Sending arguments to your playbook

 		
 Creating iRules from a list, with loop

 		
 The fallback F5 module for when there is no idempotent module

 		
 Running in a virtualenv, and the associated problems

 		
 Creating roles

 		
 Module – Debugging Ansible problems

 		
 Enable verbose debugging

 		
 Save and view remote module execution code

 		
 Filing bugs

 		
 Getting assistance with a problem

 		
 Enable debug output

 		
 Dealing with “bigsuds/f5-sdk not found” errors

 		
 Dealing with “authorization failed” errors

 		
 Dealing with unsupported versions

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/front_cover.png
'

shoot
“test sugoe:
°
roxsiqiee_debib® eunt

1_lhc anBBA Graem ent
0.4

alat > segemisic v

20,0 60520 1 wmbe elogbeg” (1 niet”

1.0 0*:*stoode weu_nimbe*,"0_5.0 £.0_$.0

8.0_1,0_0° tuode

.q q
.0

sitovg*,"0 S0
smod* *t 0% *anoitesgous_teet”,"0 ¢
0 5.1 1.0 0" MemengAsenesil Noqque
weiv_oitonq®,*0, 5.0 £,0_5.0_1,0.0":*

telewsn vedoisa*,0_€,0_S.1_It 0
0,80

D_£.0 1.0.80 0°:*et0ons S
waqewgelonq” .t &1 I ED S0
180V 01etwaiviesio’, "0° “ssdll noltesup_hoaaus Hion*,*0":"stne.
te. *010 08", "08" Himil"): “elsbom” (" lam1on - “wlv_egem
LI wen®“wbo 1
ne3 UDY aeona 18 Nol1aellnd 010q palllee ot F'Bhow ol 18D 2t
AN\ llag (el (3Nege 891 (YD) snqRIQOloTa eQe "
V apttit e

*moo.eept

oo . heupt fakreat

.
€Y oo T

_static/back_cover.png
FASTER.
WE MAKE APPS G‘ Chinkrte

F5 Networks, Inc. | f5.com

US Headquarters: 401 Elliott Ave W, Seattle, WA 98119 | 888-882-4447 // Americas: inffo@f5.com // Asia-Pacific: apacinfo@f5.com // B com // Japan: f5j-info@f5.com
©2017 F5 Networks, Inc. All rights reserved. F5, F5 Networks, and the F5 logo are trademarks of F5 Networks, Inc. in the U.S. and in certain other i Other F5 ks are identified at f5.com. Any other
products, services, or company names referenced herein may be trademarks of their respective owners with no or affiliation, exp! or implied, claimed by F5. These training materials and documentation

are F5 Confidential Information and are subject to the F5 Networks Reseller Agreement. You may not share these training materials and documentation with any third party without the express written permission of F5.

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/class1/ansible-doc-output.png
- vian
The VLAN that the new self IPs will be on. When creat
[befault: (null)]

NOTES:
* Requires the f5-sdk Python package on the host. This
* Requires the netaddr Python package on the host.
 For more information on using Ansible to manage F5 Ne
https://ww.ansible. con/ansible-f5.

REQUIREMENTS: netaddr, f5-sdk e

AUTHOR: Tim Rupp (@caphrin007)
EXTENDS_DOCUMENTATION_FRAGMENT: f5
METADATA:

_static/class1/lab4.2.1.png
<10.1.1.6> PUT /tmp/tmp_0Qdcy TO /root/.ansible/tmp/ansible—tmp-1512367718.13-21522411002
<10.1.1.6> SSH: EXEC sftp -b - -C —o ControlWMaster=auto -o ControlPersist=60s —o KbdInter
publickey -o PasswordAuthentication=no -o ConnectTimeout=10 -o ControlPath=/root/.ansible
<10.1.1.6> (0, 'sftp> put /tmp/tmp_0Qdcy /root/.ansible/tmp/ansible-tmp-1512367718.13-215
<10.1.1.6> ESTABLISH SSH CONNECTION FOR USER: None
<10.1.1.6> SSH: EXEC ssh -C -o ControlMaster=auto -o ControlPersist=60s -o KbdInteractive
key —-o PasswordAuthentication=no -0 ConnectTimeout=10 -o ControlPath=/root/.ansible/cp/0¢€
15224110025969/ /root/.ansible/tmp/ansible-tmp-1512367718.13-215224110025969/apt.py && sl
<10.1.1.6> (0, '', '")
<10.1.1.6> ESTABLISH SSH CONNECTION FOR USER: None
<10.1.1.6> SSH: EXEC ssh -C -o ControlMaster=auto -o ControlPersist=60s -o KbdInteractive
key -o PasswordAuthentication=no -o ConnectTimeout=10 —o ControlPath=/iFo0t/Nansible/cp/a6
367718.13-215224110025969/apt.py & sleep 0'"'"'"
<10.1.1.6> (@, '\r\n{"invocation": {"module_args": {"force_apt_get": false, "autoclean":
state": "present", "autoremove'": false, "purge": false, "update_cache": true, "name": "re
install_recommends": null, "upgrade'": null, "force": false, "allow_unauthenticated": fals
d connection to 10.1.1.6 closed.\r\n')
ok: [server] => {
""cache_update_time": 1512367718,
"cache_updated": true,
"changed": false,
"invocation": {
"module_args": {
"allow_unauthenticated": false,
"autoclean": false,
"autoremove": false,

_static/up.png

_static/image001.png
[JON @ F5 Networks - Downloads Ove X \ 9

& C' @ F5 Networks Inc [US] https://downloads.f5.com/esd/index.jsp T 2GS ODOB

F5.COM DEVCENTRAL ASKF5 PARTNERS CAREERS

@@ My Account | Logoff

Downloads Home / Downloads Overview

Downloads
Downloads Overview H

Downloads Overview
FAQs

Welcome to the Downloads site for F5 Networks, Inc. where you may download software, patches and other files for
Other Applications your business needs. Here are some helpful tips for utilizing this site:
AskF5 e Be sure to read the Release Notes as some files are designed for specific devices and will not work on others
BIG-IP iHealth (NOTE: Release Notes may be found on AskF5 under each product menu)

. . * Read the End User License Agreement thoroughly before accepting
Licensing Tools

¢ This site supports http, https and ftp downloads, choose the protocol that you prefer

¢ If you have questions or issues while trying to download, please refer to the FAQ section

e Certain downloads require a service contract for activation

Thank you for your continued support of F5 Networks, Inc.

Find a Download

_static/image002.png
o000 / @ F5 Networks - Downloads Ove x '\ ()

& C' & F5 Networks Inc [US] https://downloads.f5.com/esd/index.jsp T 2GS ODOB
F5.COM DEVCENTRAL ASKF5 PARTNERS CAREERS

@@ My Account | Logoff

Downloads Home / Downloads Overview

Downloads

Downloads Overview

Downloads Overview

FAQs

Welcome to the Downloads site for F5 Networks, Inc. where you may download software, patches and other files for
Other Applications your business needs. Here are some helpful tips for utilizing this site:
AskF5 e Be sure to read the Release Notes as some files are designed for specific devices and will not work on others
BIG-IP iHealth (NOTE: Release Notes may be found on AskF5 under each product menu)

. . * Read the End User License Agreement thoroughly before accepting
Licensing Tools

¢ This site supports http, https and ftp downloads, choose the protocol that you prefer

¢ If you have questions or issues while trying to download, please refer to the FAQ section

e Certain downloads require a service contract for activation

Thank you for your continued suppo

Find a Download

F5 Networks, Inc.

_static/class1/lab4.7.1.png
(fSansible) SEA-ML-00028116:labs trupp$ curl —k —u admin:admin https://localhost:10443/mgnt/tn/sys | jq .
% Total % Received % Xferd Average Speed Time ~Time Time Current

Dload Upload Total Spent Left Speed
100 3409 100 3409 © 0 56110 0 —:

syscollectionstate
‘https://localhost/mgmt/tn/sysTver=12.

_static/class1/lab4.7.2.png
ONLINE (ACTIVE)
Standalone

Partion List Authentication | Remote Role Groups

No records to display.

Delet

-
B
S
o

High Availability
ol

oo

e

-

Crypto Offloading User List
Logs
Support

_static/class1/lab4.6.2.png
Ansible Controller

venvi

Ansible
F5 SDK

connection: loca
delegate_to: localhost

venv2

F5 SDK
needed

_static/class1/lab4.6.3.png
Ansible Controller

venvi

Ansible
F5 SDK

connection: local
delegate_to: localhost

_static/class1/requirements-header.png
bigip_selfip - Manage Self-IPs on a BIG-IP system

New in version 2.2.

« Synopsis

» Requirements (on host that executes module)

« Options
« Examples

« Return Values

 Notes
o Status

Synopsis

« Manage Self-IPs on a BIG-IP system

Requirements (on host that executes module)

* netaddr
» f5-sdk
Options
parameter | required default choices comment
address no The IP addresses for the new self IP. This value is

themselves cannot be changed after they are cre

allow_service

no

Configure port lockdown for the Self IP. By defau
This can be changed to allow TCP and UDP ports

_images/ansible-doc-output.png
- vian
The VLAN that the new self IPs will be on. When creat
[befault: (null)]

NOTES:
* Requires the f5-sdk Python package on the host. This
* Requires the netaddr Python package on the host.
 For more information on using Ansible to manage F5 Ne
https://ww.ansible. con/ansible-f5.

REQUIREMENTS: netaddr, f5-sdk e

AUTHOR: Tim Rupp (@caphrin007)
EXTENDS_DOCUMENTATION_FRAGMENT: f5
METADATA:

_static/class1/lab4.2.3.png
def debug(command, zipped_mod, json_params):

The code here normally doesn't run. It's only used for debugging on the
remote machine.

The subcommands in this function make it easier to debug ansiballz
modules. Here's the basic steps:

Run ansible with the environment variable: ANSIBLE_KEEP_REMOTE_FILES=1 and -vvv
to save the module file remotely::
$ ANSIBLE_KEEP_REMOTE_FILES=1 ansible hostl -m ping -a 'data=october' -vvv

Part of the verbose output will tell you where on the remote machine the
module was written to::
fooal
<hostl> SSH: EXEC ssh -C —-q -o ControlMaster=auto -o ControlPersist=60s -o KbdInterac

HHEFHHEFEHFEHRTEHEHRIER

tiveAuthentication=no -o

PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey —-o Password

Authentication=no -o ConnectTimeout=10 -o

ControlPath=/home/badger/.ansible/cp/ansible-ssh-%h—%p-%r -tt rhel7 '/bin/sh -c '"'"'

LANG=en_US.UTF-8 LC_ALL=en_US.UTF-8

013.

ing

ing

LC_MESSAGES=en_US.UTF-8 /usr/bin/python /home/badger/.ansible/tmp/ansible-tmp-1461173
93-9076457629738/ping'""'" "’

[...]

#

Login to the remote machine and run the module file via from the previous

step with the explode subcommand to extract the module payload into

source files::

$ ssh hostl

$ /usr/bin/python /home/badger/.ansible/tmp/ansible-tmp-1461173013.93-9076457629738/p
explode

Module expanded into:

/home/badger/.ansible/tmp/ansible—tmp-1461173408.08-279692652635227/ansible

#

You can now edit the source files to instrument the code or experiment with

different parameter values. When you're ready to run the code you've modified

(instead of the code from the actual zipped module), use the execute subcommand like th

$ /usr/bin/python /home/badger/.ansible/tmp/ansible-tmp-1